Finite Element Modelling Of The Impact Response Of Fibre Metal Laminates Under Tension Preloading

[1]  R. Velmurugan,et al.  High-velocity impact response of titanium-based fiber metal laminates. Part II: Analytical modeling , 2021 .

[2]  H. Sabouri,et al.  High-velocity impact response of fiber metal laminates: Experimental investigation of projectile's deformability , 2020 .

[3]  P. Jakubczak The comparison of the veritable response to impact load of conventional and Thin-Ply types of fibre metal laminates , 2020 .

[4]  S. Edwardson,et al.  Experimental and numerical characterization of titanium-based fibre metal laminates , 2020 .

[5]  Chao Zhang,et al.  Finite Element Simulation of Tensile Preload Effects on High Velocity Impact Behavior of Fiber Metal Laminates , 2020, Applied Composite Materials.

[6]  Wentao He,et al.  Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches , 2019, Thin-Walled Structures.

[7]  P. Xue,et al.  Influence of in-plane tensile preloads on impact responses of composite laminated plates , 2019, International Journal of Mechanical Sciences.

[8]  Adrian P. Mouritz,et al.  Advances in understanding the response of fibre-based polymer composites to shock waves and explosive blasts , 2019, Composites Part A: Applied Science and Manufacturing.

[9]  P. Jakubczak The impact behaviour of hybrid titanium glass laminates—Experimental and numerical approach , 2019, International Journal of Mechanical Sciences.

[10]  J. G. Carrillo,et al.  Low velocity impact response of fibre metal laminates based on aramid fibre reinforced polypropylene , 2019, Composite Structures.

[11]  G. Corderley,et al.  Failure modes in a carbon / titanium fibre metal laminate under hyper-velocity impact , 2019, International Journal of Impact Engineering.

[12]  Sang Yoon Park,et al.  Fabrication of high-stiffness fiber-metal laminates and study of their behavior under low-velocity impact loadings , 2018 .

[13]  R. Kitey,et al.  Effect of through thickness metal layer distribution on the low velocity impact response of fiber metal laminates , 2018 .

[14]  S. John,et al.  High-velocity impact deformation and perforation of fibre metal laminates , 2018, Journal of Materials Science.

[15]  J. Bieniaś,et al.  Impact damage growth in carbon fibre aluminium laminates , 2017 .

[16]  W. Cantwell,et al.  Impact on thermoplastic fibre-metal laminates: Experimental observations , 2017 .

[17]  E. Sitnikova,et al.  The analysis of the ultimate blast failure modes in fibre metal laminates , 2016 .

[18]  J. Bieniaś,et al.  Low-velocity impact resistance of aluminium glass laminates – Experimental and numerical investigation , 2016 .

[19]  P. Gaudenzi,et al.  Low velocity impact response of basalt-aluminium fibre metal laminates , 2016 .

[20]  Ali Kurşun,et al.  Experimental and numerical analysis of low velocity impact on a preloaded composite plate , 2015, Adv. Eng. Softw..

[21]  Olli Saarela,et al.  Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture , 2015 .

[22]  R. Benedictus,et al.  Modelling of impact damage and dynamics in fibre-metal laminates – A review , 2014 .

[23]  Gin Boay Chai,et al.  Low velocity impact response of fibre-metal laminates – A review , 2014 .

[24]  M. Shokrieh,et al.  Effect of stacking sequence on failure mode of fiber metal laminates under low-velocity impact , 2014, Iranian Polymer Journal.

[25]  Chun H. Wang,et al.  Effects of bondline flaws on the damage tolerance of composite scarf joints , 2013 .

[26]  Tuan Ngo,et al.  Out-of-plane impact resistance of aluminium plates subjected to low velocity impacts , 2013 .

[27]  Vadim V. Silberschmidt,et al.  Ballistic impact behaviour of woven fabric composite: Finite element analysis and experiments , 2013 .

[28]  R. Benedictus,et al.  Impact resistance of fiber-metal laminates: A review , 2012 .

[29]  G. Chai,et al.  Low-velocity impact response of fibre–metal laminates – Experimental and finite element analysis , 2012 .

[30]  R. Benedictus,et al.  Damage evolution in GLARE fibre-metal laminate under repeated low-velocity impact tests , 2012 .

[31]  B. Liaw,et al.  Stacking Sequence and Geometrical Effects on Low-Velocity Impact Behaviors of GLARE 5 (3/2) Fiber–Metal Laminates , 2012 .

[32]  R. Benedictus,et al.  Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates , 2012, Applied Composite Materials.

[33]  Wesley J. Cantwell,et al.  Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading , 2011 .

[34]  Onur Çoban,et al.  A review: Fibre metal laminates, background, bonding types and applied test methods , 2011 .

[35]  H. Nakatani,et al.  Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact , 2011 .

[36]  Hyoungseock Seo,et al.  Numerical Simulation of Glass-Fiber-Reinforced Aluminum Laminates with Diverse Impact Damage , 2010 .

[37]  A. K. Pickett,et al.  Test and Modelling of Impact on Pre-Loaded Composite Panels , 2009 .

[38]  Zafer Gürdal,et al.  Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations , 2009 .

[39]  Z. Guan,et al.  Numerical modeling of the impact response of fiber-metal laminates , 2009 .

[40]  I. H. Marshall,et al.  The response of composite structures with pre-stress subject to low velocity impact damage , 2004 .

[41]  Yasuhiro Yamaguchi,et al.  Composite Materials for Aircraft Structures. , 1995 .

[42]  A. Vlot,et al.  Impact properties of Fibre Metal Laminates , 1993 .

[43]  A. Mouritz Residual tensile strength of ballistically damaged aluminium-based laminates , 1993 .