Finding cosmic voids and filament loops using topological data analysis

(abridged) We present the Significant Cosmic Holes in Universe (SCHU) method for identifying cosmic voids and loops of filaments in cosmological datasets and assigning their statistical significance using techniques from topological data analysis. Persistent homology is used to find different dimensional holes. For dark matter halo catalogs and galaxy surveys, the 0-, 1-, and 2-dimensional holes can be identified with clusters, loops of filaments, and voids. The procedure overlays halos/galaxies on a 3D grid, and a distance-to-measure (DTM) function is calculated at each point of the grid. A filtration is generated over the lower-level sets of the DTM across increasing threshold values. The filtered simplicial complex can be used to summarize the birth/death times of the different dimension homology group generators (i.e., the holes). Persistence diagrams are produced from the dimension and birth/death times of each homology group generator. Using the persistence diagrams and bootstrap sampling, we explain how $p$-values can be assigned to each homology group generator. The homology group generators on a persistence diagram are not, in general, uniquely located back in the original dataset volume so we propose a method for finding a representation of the homology group generators. This method provides a novel, statistically rigorous approach for locating informative generators in cosmological datasets, which may be useful for providing complementary cosmological constraints on the effects of, for example, the sum of the neutrino masses. The method is tested on a Voronoi foam simulation, and then applied to a subset of the SDSS galaxy survey and a cosmological simulation. Lastly, we calculate Betti functions for two of the MassiveNuS simulations and discuss implications for using the persistent homology of the density field to help break degeneracy in the cosmological parameters.

[1]  J. Peacock,et al.  Redshift-space distortions around voids , 2016, 1603.05184.

[2]  Frédéric Chazal,et al.  Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..

[3]  R. Weygaert,et al.  THE SPINE OF THE COSMIC WEB , 2008, 0809.5104.

[4]  Xiaojin Zhu,et al.  Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing , 2013, IJCAI.

[5]  Kelin Xia,et al.  Persistent homology analysis of protein structure, flexibility, and folding , 2014, International journal for numerical methods in biomedical engineering.

[6]  Hamid Krim,et al.  Persistent Homology of Delay Embeddings and its Application to Wheeze Detection , 2014, IEEE Signal Processing Letters.

[7]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[8]  Jounghun Lee,et al.  CONSTRAINING THE DARK ENERGY EQUATION OF STATE WITH COSMIC VOIDS , 2007, 0704.0881.

[9]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[10]  Benjamin D. Wandelt,et al.  PRECISION COSMOGRAPHY WITH STACKED VOIDS , 2011, 1110.0345.

[11]  W. Press,et al.  How to identify and weigh virialized clusters of galaxies in a complete redshift catalog , 1982 .

[12]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[13]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[14]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[15]  S. Nadathur Testing cosmology with a catalogue of voids in the BOSS galaxy surveys , 2016, 1602.04752.

[16]  Rien van de Weygaert,et al.  The darkness that shaped the void: dark energy and cosmic voids , 2012, 1205.4238.

[17]  M. Neyrinck zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.

[18]  J. E. Forero-Romero,et al.  A Dynamical Classification of the Cosmic Web , 2008, 0809.4135.

[19]  C. A. Oxborrow,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[20]  C. Carbone,et al.  Massive neutrinos leave fingerprints on cosmic voids , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  B. Wandelt,et al.  Precision cosmology with voids: definition, methods, dynamics , 2009, 0906.4101.

[22]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[24]  C. Pichon,et al.  The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.

[25]  Mariette Yvinec,et al.  The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.

[26]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[27]  Oliver Hahn,et al.  Properties of dark matter haloes in clusters, filaments, sheets and voids , 2006, astro-ph/0610280.

[28]  C. Genovese,et al.  Non-parametric 3D map of the intergalactic medium using the Lyman-alpha forest , 2014, 1401.1867.

[29]  M. Aragon-Calvo The hierarchical nature of the spin alignment of dark matter haloes in filaments , 2013, 1303.1590.

[30]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[31]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[32]  Columbia,et al.  MassiveNuS: cosmological massive neutrino simulations , 2017, 1711.10524.

[33]  A. Klypin,et al.  Percolation technique for galaxy clustering , 1993 .

[34]  J. University,et al.  The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution , 2007, 0705.2072.

[35]  M. Neyrinck,et al.  The persistent percolation of single-stream voids , 2014, 1410.4751.

[36]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[37]  M. Viel,et al.  Voids in massive neutrino cosmologies , 2015, 1506.03088.

[38]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[39]  V. Icke,et al.  The Galaxy Distribution as a Voronoi Foam , 1994 .

[40]  C. A. Oxborrow,et al.  Planck 2015 results: XXI. The integrated Sachs-Wolfe effect , 2015, 1502.01595.

[41]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[42]  Benjamin Dan Wandelt,et al.  Probing cosmology and gravity with redshift-space distortions around voids , 2015, 1507.04363.

[43]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[44]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[45]  Durham,et al.  Evolution of the cosmic web , 2014, 1401.7866.

[46]  J. Huchra,et al.  Groups of galaxies. I. Nearby groups , 1982 .

[47]  Brittany Terese Fasy,et al.  Functional summaries of persistence diagrams , 2018, Journal of Applied and Computational Topology.

[48]  Rien van de Weygaert,et al.  Tracing the cosmic web , 2017, 1705.03021.

[49]  V. Icke,et al.  Fragmenting the universe , 1987 .

[50]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[51]  D. Weinberg,et al.  A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM , 2012, 1207.2524.

[52]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[53]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[54]  Nesar S. Ramachandra,et al.  Multi-stream portrait of the cosmic web , 2014, 1412.7768.

[55]  Heidelberg,et al.  Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints , 2014, 1402.6212.

[56]  Brittany Terese Fasy,et al.  Introduction to the R package TDA , 2014, ArXiv.

[57]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[58]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[59]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[60]  Faculteit der Wiskunde en Natuurwetenschappen,et al.  Fragmenting the universe. II - Voronoi vertices as Abell clusters , 1989 .

[61]  Alexander S. Szalay,et al.  origami: DELINEATING HALOS USING PHASE-SPACE FOLDS , 2012, 1201.2353.

[62]  Y. Hoffman,et al.  A kinematic classification of the cosmic web , 2012, 1201.3367.

[63]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[64]  Herbert Edelsbrunner,et al.  Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..

[65]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[66]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[67]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[68]  R. Weygaert,et al.  A cosmic watershed: the WVF void detection technique , 2007, 0706.2788.

[69]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.

[70]  J. Frieman,et al.  Cosmic voids and void lensing in the Dark Energy Survey Science Verification data , 2016, 1605.03982.

[71]  S. Allen,et al.  Cosmology and astrophysics from relaxed galaxy clusters – I. Sample selection , 2015, 1502.06020.

[72]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[73]  B. Wandelt,et al.  Counting voids to probe dark energy , 2015, 1503.07690.

[74]  Rien van de Weygaert,et al.  NEXUS: Tracing the cosmic web connection , 2012, 1209.2043.

[75]  Dmitriy Morozov,et al.  Dualities in persistent (co)homology , 2011, ArXiv.

[76]  R. van de Weygaert,et al.  Continuous fields and discrete samples: reconstruction through delaunay tessellations , 2000 .

[77]  F. Kitaura,et al.  Linearization with cosmological perturbation theory , 2011, 1111.6617.

[78]  M. Neyrinck,et al.  The Aspen-Amsterdam void finder comparison project , 2008, 0803.0918.

[79]  John A. Peacock,et al.  The lensing and temperature imprints of voids on the cosmic microwave background. , 2016, 1609.00301.

[80]  J. Weller,et al.  Constraints on Cosmology and Gravity from the Dynamics of Voids. , 2016, Physical review letters.

[81]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[82]  Herbert Edelsbrunner,et al.  The Topology of the Cosmic Web in Terms of Persistent Betti Numbers , 2016, 1608.04519.

[83]  Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters , 2011, 1104.1635.

[84]  W. Schaap,et al.  The Cosmic Web: Geometric Analysis , 2007, 0708.1441.

[85]  R. Weygaert Fragmenting the universe. III: The construction and statistics of 3-D Voronoi tessellations , 1994 .