Finding cosmic voids and filament loops using topological data analysis
暂无分享,去创建一个
Xin Xu | Jessi Cisewski-Kehe | Daisuke Nagai | D. Nagai | J. Cisewski-Kehe | Sheridan B. Green | X. Xu | Xin Xu | S. B. Green
[1] J. Peacock,et al. Redshift-space distortions around voids , 2016, 1603.05184.
[2] Frédéric Chazal,et al. Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..
[3] R. Weygaert,et al. THE SPINE OF THE COSMIC WEB , 2008, 0809.5104.
[4] Xiaojin Zhu,et al. Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing , 2013, IJCAI.
[5] Kelin Xia,et al. Persistent homology analysis of protein structure, flexibility, and folding , 2014, International journal for numerical methods in biomedical engineering.
[6] Hamid Krim,et al. Persistent Homology of Delay Embeddings and its Application to Wheeze Detection , 2014, IEEE Signal Processing Letters.
[7] David Cohen-Steiner,et al. Vines and vineyards by updating persistence in linear time , 2006, SCG '06.
[8] Jounghun Lee,et al. CONSTRAINING THE DARK ENERGY EQUATION OF STATE WITH COSMIC VOIDS , 2007, 0704.0881.
[9] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[10] Benjamin D. Wandelt,et al. PRECISION COSMOGRAPHY WITH STACKED VOIDS , 2011, 1110.0345.
[11] W. Press,et al. How to identify and weigh virialized clusters of galaxies in a complete redshift catalog , 1982 .
[12] R. Nichol,et al. Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.
[13] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[14] T. Sousbie. The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.
[15] S. Nadathur. Testing cosmology with a catalogue of voids in the BOSS galaxy surveys , 2016, 1602.04752.
[16] Rien van de Weygaert,et al. The darkness that shaped the void: dark energy and cosmic voids , 2012, 1205.4238.
[17] M. Neyrinck. zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.
[18] J. E. Forero-Romero,et al. A Dynamical Classification of the Cosmic Web , 2008, 0809.4135.
[19] C. A. Oxborrow,et al. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.
[20] C. Carbone,et al. Massive neutrinos leave fingerprints on cosmic voids , 2018, Monthly Notices of the Royal Astronomical Society.
[21] B. Wandelt,et al. Precision cosmology with voids: definition, methods, dynamics , 2009, 0906.4101.
[22] Ulrich Bauer,et al. A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[23] Afra Zomorodian,et al. Computing Persistent Homology , 2005, Discret. Comput. Geom..
[24] C. Pichon,et al. The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.
[25] Mariette Yvinec,et al. The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.
[26] David R. Silva,et al. The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.
[27] Oliver Hahn,et al. Properties of dark matter haloes in clusters, filaments, sheets and voids , 2006, astro-ph/0610280.
[28] C. Genovese,et al. Non-parametric 3D map of the intergalactic medium using the Lyman-alpha forest , 2014, 1401.1867.
[29] M. Aragon-Calvo. The hierarchical nature of the spin alignment of dark matter haloes in filaments , 2013, 1303.1590.
[30] J. Bond,et al. How filaments of galaxies are woven into the cosmic web , 1995, Nature.
[31] D. A. García-Hernández,et al. University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .
[32] Columbia,et al. MassiveNuS: cosmological massive neutrino simulations , 2017, 1711.10524.
[33] A. Klypin,et al. Percolation technique for galaxy clustering , 1993 .
[34] J. University,et al. The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution , 2007, 0705.2072.
[35] M. Neyrinck,et al. The persistent percolation of single-stream voids , 2014, 1410.4751.
[36] David G. Kirkpatrick,et al. On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.
[37] M. Viel,et al. Voids in massive neutrino cosmologies , 2015, 1506.03088.
[38] Adrian T. Lee,et al. CMB-S4 Science Book, First Edition , 2016, 1610.02743.
[39] V. Icke,et al. The Galaxy Distribution as a Voronoi Foam , 1994 .
[40] C. A. Oxborrow,et al. Planck 2015 results: XXI. The integrated Sachs-Wolfe effect , 2015, 1502.01595.
[41] Frédéric Chazal,et al. Geometric Inference for Probability Measures , 2011, Found. Comput. Math..
[42] Benjamin Dan Wandelt,et al. Probing cosmology and gravity with redshift-space distortions around voids , 2015, 1507.04363.
[43] J. Marron,et al. Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.
[44] V. Narayanan,et al. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.
[45] Durham,et al. Evolution of the cosmic web , 2014, 1401.7866.
[46] J. Huchra,et al. Groups of galaxies. I. Nearby groups , 1982 .
[47] Brittany Terese Fasy,et al. Functional summaries of persistence diagrams , 2018, Journal of Applied and Computational Topology.
[48] Rien van de Weygaert,et al. Tracing the cosmic web , 2017, 1705.03021.
[49] V. Icke,et al. Fragmenting the universe , 1987 .
[50] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[51] D. Weinberg,et al. A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM , 2012, 1207.2524.
[52] G. W. Pratt,et al. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.
[53] N. Kaiser,et al. Mapping the dark matter with weak gravitational lensing , 1993 .
[54] Nesar S. Ramachandra,et al. Multi-stream portrait of the cosmic web , 2014, 1412.7768.
[55] Heidelberg,et al. Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints , 2014, 1402.6212.
[56] Brittany Terese Fasy,et al. Introduction to the R package TDA , 2014, ArXiv.
[57] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[58] Risa H. Wechsler,et al. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.
[59] A. Hornstrup,et al. CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.
[60] Faculteit der Wiskunde en Natuurwetenschappen,et al. Fragmenting the universe. II - Voronoi vertices as Abell clusters , 1989 .
[61] Alexander S. Szalay,et al. origami: DELINEATING HALOS USING PHASE-SPACE FOLDS , 2012, 1201.2353.
[62] Y. Hoffman,et al. A kinematic classification of the cosmic web , 2012, 1201.3367.
[63] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[64] Herbert Edelsbrunner,et al. Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..
[65] Karl Glazebrook,et al. KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.
[66] Edward J. Wollack,et al. The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.
[67] Sivaraman Balakrishnan,et al. Confidence sets for persistence diagrams , 2013, The Annals of Statistics.
[68] R. Weygaert,et al. A cosmic watershed: the WVF void detection technique , 2007, 0706.2788.
[69] S. More,et al. Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.
[70] J. Frieman,et al. Cosmic voids and void lensing in the Dark Energy Survey Science Verification data , 2016, 1605.03982.
[71] S. Allen,et al. Cosmology and astrophysics from relaxed galaxy clusters – I. Sample selection , 2015, 1502.06020.
[72] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[73] B. Wandelt,et al. Counting voids to probe dark energy , 2015, 1503.07690.
[74] Rien van de Weygaert,et al. NEXUS: Tracing the cosmic web connection , 2012, 1209.2043.
[75] Dmitriy Morozov,et al. Dualities in persistent (co)homology , 2011, ArXiv.
[76] R. van de Weygaert,et al. Continuous fields and discrete samples: reconstruction through delaunay tessellations , 2000 .
[77] F. Kitaura,et al. Linearization with cosmological perturbation theory , 2011, 1111.6617.
[78] M. Neyrinck,et al. The Aspen-Amsterdam void finder comparison project , 2008, 0803.0918.
[79] John A. Peacock,et al. The lensing and temperature imprints of voids on the cosmic microwave background. , 2016, 1609.00301.
[80] J. Weller,et al. Constraints on Cosmology and Gravity from the Dynamics of Voids. , 2016, Physical review letters.
[81] C. B. D'Andrea,et al. Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.
[82] Herbert Edelsbrunner,et al. The Topology of the Cosmic Web in Terms of Persistent Betti Numbers , 2016, 1608.04519.
[83] Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters , 2011, 1104.1635.
[84] W. Schaap,et al. The Cosmic Web: Geometric Analysis , 2007, 0708.1441.
[85] R. Weygaert. Fragmenting the universe. III: The construction and statistics of 3-D Voronoi tessellations , 1994 .