Diverse Visible-Light-Promoted Functionalizations of Benzotriazoles Inspired by Mechanism-Based Luminescence Screening.

Three new visible-light-promoted functionalizations of benzotriazole substrates were discovered using a mechanism-based screening method. ortho-Thiolated, borylated, and alkylated N-arylbenzamide products were obtained under mild reaction conditions in a new denitrogenative synthetic approach to functionalized aniline derivatives. The functional group tolerance of the borylation reaction was further analyzed in the first application of an additive-based robustness screen in a photocatalytic transformation. All the functionalizations proceed via photocatalytically initiated chain mechanisms as indicated by determination of the reaction quantum yields and Stern-Volmer analyses.

[1]  A. Pfaltz,et al.  Mass spectrometric screening of enantioselective Diels-Alder reactions. , 2008, Angewandte Chemie.

[2]  Durga Prasad Hari,et al.  The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts in a new light. , 2013, Angewandte Chemie.

[3]  Corey R J Stephenson,et al.  Visible light photoredox catalysis: applications in organic synthesis. , 2011, Chemical Society reviews.

[4]  Durga Prasad Hari,et al.  The photoredox-catalyzed Meerwein addition reaction: intermolecular amino-arylation of alkenes. , 2014, Angewandte Chemie.

[5]  J. Scaiano,et al.  Active participation of amine-derived radicals in photoredox catalysis as exemplified by a reductive cyclization , 2013 .

[6]  G. Lloyd‐Jones,et al.  Testing Racemic Chiral Catalysts for Kinetic Resolution Potential. , 2001, Angewandte Chemie.

[7]  A. Katritzky,et al.  Properties and Synthetic Utility of N-Substituted Benzotriazoles. , 1998, Chemical reviews.

[8]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[9]  B. König,et al.  Die photokatalytische Meerwein‐Arylierung: eine klassische Aryldiazoniumsalz‐Reaktion in neuem Licht , 2013 .

[10]  Christian Markert,et al.  Screening of chiral catalysts and catalyst mixtures by mass spectrometric monitoring of catalytic intermediates. , 2004, Angewandte Chemie.

[11]  Shouyun Yu,et al.  Synthesis of Isoquinolones Using Visible-Light-Promoted Denitrogenative Alkyne Insertion of 1,2,3-Benzotriazinones. , 2015, Organic letters.

[12]  Frank Glorius,et al.  Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis. , 2014, Chemistry.

[13]  M. A. Ischay,et al.  Visible light photocatalysis as a greener approach to photochemical synthesis. , 2010, Nature chemistry.

[14]  F. Ullmann,et al.  Ueber eine neue Carbazolsynthese , 1896 .

[15]  Eric Meggers,et al.  Asymmetric catalysis activated by visible light. , 2015, Chemical communications.

[16]  A. Lei,et al.  Synthetic applications of photoredox catalysis with visible light. , 2013, Organic & biomolecular chemistry.

[17]  Christopher K Prier,et al.  Discovery of an α-Amino C–H Arylation Reaction Using the Strategy of Accelerated Serendipity , 2011, Science.

[18]  Kevin Bateman,et al.  Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.

[19]  M. Terada,et al.  Palladium-catalyzed indolization of N-aroylbenzotriazoles with disubstituted alkynes. , 2009, Organic letters.

[20]  John F. Hartwig,et al.  A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions , 2011, Science.

[21]  V. Young,et al.  Fused-ring thiadiazines: preparation and crystallographic characterization of 3-phenyl derivative of benzo-, pyridio[2,3-e]-, pyrazino[2,3-e]-, and tetrafluorobenzo-[1,2,4]thiadiazines. , 2004, The Journal of organic chemistry.

[22]  J. Moran,et al.  Identifying lead hits in catalyst discovery by screening and deconvoluting complex mixtures of catalyst components† †Electronic supplementary information (ESI) available: Experimental procedures and spectral data. See DOI: 10.1039/c5sc00268k Click here for additional data file. , 2015, Chemical science.

[23]  Kirsten Zeitler Photoredoxkatalyse mit sichtbarem Licht , 2009 .

[24]  F. Glorius,et al.  Schnelles Entdecken photokatalytischer Reaktionen durch mechanismusbasiertes Screening , 2016 .

[25]  Frank Glorius,et al.  Accelerated Discovery in Photocatalysis using a Mechanism-Based Screening Method. , 2016, Angewandte Chemie.

[26]  Frank Glorius,et al.  Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. , 2013, Journal of the American Chemical Society.

[27]  W. Parmley,et al.  Further Observations Concerning the Hyperglycemic Activity of Benzothiadiazines , 1964, Diabetes.

[28]  M. Májek,et al.  Organocatalytic visible light mediated synthesis of aryl sulfides. , 2013, Chemical communications.

[29]  F. Matthias Bickelhaupt,et al.  Catalyst selection based on intermediate stability measured by mass spectrometry , 2010, Nature Chemistry.

[30]  Lei Zhou,et al.  Phenanthrene Synthesis by Eosin Y‐Catalyzed, Visible Light‐ Induced [4+2] Benzannulation of Biaryldiazonium Salts with Alkynes , 2012 .

[31]  K. Zeitler Photoredox catalysis with visible light. , 2009, Angewandte Chemie.

[32]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[33]  B. König,et al.  Die photoredoxkatalysierte Meerwein-Addition: intermolekulare Aminoarylierung von Alkenen† , 2014 .

[34]  Peter Chen,et al.  Rasches Screening von Olefinpolymerisationskatalysator-Bibliotheken durch Elektrospray-Ionisations-Tandem-Massenspektrometrie , 1999 .

[35]  Ying He,et al.  Dual Visible Light Photoredox and Gold-Catalyzed Arylative Ring Expansion , 2014, Journal of the American Chemical Society.

[36]  T. Okabe,et al.  A new series of estrogen receptor modulators: effect of alkyl substituents on receptor-binding affinity. , 2004, Chemical & pharmaceutical bulletin.

[37]  Frank Glorius,et al.  A robustness screen for the rapid assessment of chemical reactions , 2013, Nature Chemistry.

[38]  Melanie S. Sanford,et al.  Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. , 2011, Journal of the American Chemical Society.

[39]  Christian Markert,et al.  Combinatorial ligand development based on mass spectrometric screening and a double mass-labeling strategy. , 2008, Journal of the American Chemical Society.

[40]  Lei Shi,et al.  Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. , 2012, Chemical Society reviews.

[41]  Frank Glorius,et al.  Application of a robustness screen for the evaluation of synthetic organic methodology , 2014, Nature Protocols.

[42]  J. Wu,et al.  Enantioselective halocyclization using reagents tailored for chiral anion phase-transfer catalysis. , 2012, Journal of the American Chemical Society.

[43]  N. Katayama,et al.  Synthesis and biological activity of novel 1,2-disubstituted benzene derivatives as factor Xa inhibitors. , 2005, Bioorganic & medicinal chemistry.

[44]  Jian Yu,et al.  Metal‐Free, Visible Light‐Induced Borylation of Aryldiazonium Salts: A Simple and Green Synthetic Route to Arylboronates , 2012 .

[45]  A. Katritzky,et al.  Novel Dimroth rearrangements of the benzotriazole system: 4-amino-1-(arylsulfonyl)benzotriazoles to 4-[(arylsulfonyl)amino]benzotriazoles , 1992 .

[46]  Frank Glorius,et al.  Intermolecular reaction screening as a tool for reaction evaluation. , 2015, Accounts of chemical research.

[47]  Hinderling,et al.  Rapid Screening of Olefin Polymerization Catalyst Libraries by Electrospray Ionization Tandem Mass Spectrometry. , 1999, Angewandte Chemie.

[48]  B. Winer The Antihypertensive Actions of Benzothiadiazines , 1961, Circulation.