Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies.

OBJECTIVE It is well established that regional cerebral metabolic rates for glucose assessed by [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in patients with Alzheimer's disease in the mental resting state (eyes and ears covered) provide a sensitive, in vivo metabolic index of Alzheimer's disease dementia. Few studies, however, have evaluated longitudinal declines in regional cerebral glucose metabolism in patients with dementia caused by Alzheimer's disease. In addition, the available studies have not used recently developed brain mapping algorithms to characterize the progression of Alzheimer's disease throughout the brain, and none considered the statistical power of regional cerebral glucose metabolism in testing the ability of treatments to attenuate the progression of dementia. METHOD The authors used FDG PET and a brain mapping algorithm to investigate cross-sectional reductions in regional cerebral glucose metabolism, longitudinal decline in regional cerebral glucose metabolism after a 1-year follow-up, and the power of this method to evaluate treatments for Alzheimer's disease in patients with mild to moderate dementia. PET scans were initially acquired in 14 patients with Alzheimer's disease and 34 healthy comparison subjects of similar age and sex. Repeat scans were obtained in the patients 1 year later. Power analyses for voxels showing maximal decline over the 1-year period in regional cerebral glucose metabolism (mg/100 g per minute) were computed to estimate the sample sizes needed to detect a significant treatment response in a 1-year, double-blind, placebo-controlled treatment study. RESULTS The patients with Alzheimer's disease had significantly lower glucose metabolism than healthy comparison subjects in parietal, temporal, occipital, frontal, and posterior cingulate cortices. One year later, the patients with Alzheimer's disease had significant declines in glucose metabolism in parietal, temporal, frontal, and posterior cingulate cortices. Using maximal glucose metabolism reductions in the left frontal cortex, we estimated that as few as 36 patients per group would be needed to detect a 33% treatment response with one-tailed significance of p</=0.005 and 80% power in a 1-year, double-blind, placebo-controlled treatment study. CONCLUSIONS These findings indicate that brain metabolism as assessed by FDG PET during mental rest is a sensitive marker of disease progression in Alzheimer's disease over a 1-year period. These findings also support the feasibility of using FDG PET as an outcome measure to test the ability of treatments to attenuate the progression of Alzheimer's disease.

[1]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[2]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[3]  R. S. J. Frackowiak,et al.  REGIONAL CEREBRAL OXYGEN SUPPLY AND UTILIZATION IN DEMENTIAA CLINICAL AND PHYSIOLOGICAL STUDY WITH OXYGEN-15 AND POSITRON TOMOGRAPHY A CLINICAL AND PHYSIOLOGICAL STUDY WITH OXYGEN - 15 AND POSITRON TOMOHRAPHY , 1981 .

[4]  T Jones,et al.  Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. , 1981, Brain : a journal of neurology.

[5]  R A Brooks,et al.  Alternative formula for glucose utilization using labeled deoxyglucose. , 1982, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  B. Reisberg,et al.  Computed Tomography and Positron Emission Transaxial Tomography Evaluations of Normal Aging and Alzheimer's Disease , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease , 1984, Neurology.

[8]  K. Davis,et al.  A new rating scale for Alzheimer's disease. , 1984, The American journal of psychiatry.

[9]  L. Hedges,et al.  Statistical Methods for Meta-Analysis , 1987 .

[10]  J. Haxby,et al.  Positron emission tomography in Alzheimer's disease , 1986, Neurology.

[11]  W. Jagust,et al.  Longitudinal studies of regional cerebral metabolism in Alzheimer's disease , 1988, Neurology.

[12]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[13]  B. L. Beattie,et al.  18Fluorodeoxyglucose Positron Emission Tomography Studies in Presumed Alzheimer Cases, Including 13 Serial Scans , 1990, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[14]  J. Haxby,et al.  Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. , 1990, Archives of neurology.

[15]  J. Haxby,et al.  Individual trajectories of cognitive decline in patients with dementia of the Alzheimer type. , 1992, Journal of clinical and experimental neuropsychology.

[16]  M J de Leon,et al.  Topography of cross-sectional and longitudinal glucose metabolic deficits in Alzheimer's disease. Pathophysiologic implications. , 1992, Archives of neurology.

[17]  Karl J. Friston,et al.  Commentary and Opinion: II. Statistical Parametric Mapping: Ontology and Current Issues , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  N. Foster,et al.  Preserved Pontine Glucose Metabolism in Alzheimer Disease: A Reference Region for Functional Brain Image (PET) Analysis , 1995, Journal of computer assisted tomography.

[19]  Edgar Erdfelder,et al.  GPOWER: A general power analysis program , 1996 .

[20]  A R Dobbs,et al.  Evaluating the Driving Competence of Dementia Patients , 1997, Alzheimer disease and associated disorders.

[21]  J V Haxby,et al.  Low glucose metabolism during brain stimulation in older Down's syndrome subjects at risk for Alzheimer's disease prior to dementia. , 1997, The American journal of psychiatry.

[22]  N. Foster,et al.  Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease , 1997, Annals of neurology.

[23]  Philip D. Harvey,et al.  Noncognitive Disturbances in Alzheimer's Disease: Frequency, Longitudinal Course, and Relationship to Cognitive Symptoms , 1997, Journal of the American Geriatrics Society.

[24]  P Pietrini,et al.  Association of premorbid intellectual function with cerebral metabolism in Alzheimer's disease: implications for the cognitive reserve hypothesis. , 1997, The American journal of psychiatry.

[25]  R. Mohs,et al.  A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease , 1998, Neurology.

[26]  D. Feng,et al.  Noninvasive Quantification of the Cerebral Metabolic Rate for Glucose Using Positron Emission Tomography, 18F-Fluoro-2-Deoxyglucose, the Patlak Method, and an Image-Derived Input Function , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  J. Mazziotta,et al.  Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Nick C Fox,et al.  Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. , 2000, Archives of neurology.

[29]  G. Alexander,et al.  The neurometabolic landscape of cognitive decline: in vivo studies with positron emission tomography in Alzheimer's disease. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[30]  G. Alexander,et al.  Declining brain activity in cognitively normal apolipoprotein E ɛ4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease , 2001, Proceedings of the National Academy of Sciences of the United States of America.