EBs Recognize a Nucleotide-Dependent Structural Cap at Growing Microtubule Ends

Summary Growing microtubule ends serve as transient binding platforms for essential proteins that regulate microtubule dynamics and their interactions with cellular substructures. End-binding proteins (EBs) autonomously recognize an extended region at growing microtubule ends with unknown structural characteristics and then recruit other factors to the dynamic end structure. Using cryo-electron microscopy, subnanometer single-particle reconstruction, and fluorescence imaging, we present a pseudoatomic model of how the calponin homology (CH) domain of the fission yeast EB Mal3 binds to the end regions of growing microtubules. The Mal3 CH domain bridges protofilaments except at the microtubule seam. By binding close to the exchangeable GTP-binding site, the CH domain is ideally positioned to sense the microtubule's nucleotide state. The same microtubule-end region is also a stabilizing structural cap protecting the microtubule from depolymerization. This insight supports a common structural link between two important biological phenomena, microtubule dynamic instability and end tracking.

[1]  T. L. Hill,et al.  Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. M. Cooper,et al.  Systematic mutational analysis of the yeast beta-tubulin gene. , 1994, Molecular biology of the cell.

[3]  K. E. Busch,et al.  The Microtubule Plus End-Tracking Proteins mal3p and tip1p Cooperate for Cell-End Targeting of Interphase Microtubules , 2004, Current Biology.

[4]  K. Mechtler,et al.  Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p , 2009, The Journal of cell biology.

[5]  Tomohiro Matsumoto,et al.  A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules. , 2012, Experimental cell research.

[6]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[7]  E. Meijering,et al.  In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends , 2010, Current Biology.

[8]  A. Hyman,et al.  EB1 Recognizes the Nucleotide State of Tubulin in the Microtubule Lattice , 2009, PloS one.

[9]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.

[10]  D. Botstein,et al.  Structure-function relationships in yeast tubulins. , 2000, Molecular biology of the cell.

[11]  Kenneth H Downing,et al.  Structural basis of interprotofilament interaction and lateral deformation of microtubules. , 2010, Structure.

[12]  M. Kirschner,et al.  The minimum GTP cap required to stabilize microtubules , 1994, Current Biology.

[13]  Masahide Kikkawa,et al.  Dynein and kinesin share an overlapping microtubule‐binding site , 2004, The EMBO journal.

[14]  D. Clare,et al.  Template-free 13-protofilament microtubule–MAP assembly visualized at 8 Å resolution , 2010, The Journal of cell biology.

[15]  Gary G. Borisy,et al.  Mammalian end binding proteins control persistent microtubule growth , 2009, The Journal of cell biology.

[16]  R. Vale,et al.  Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. , 2007, Molecular cell.

[17]  S. Fuller,et al.  Microtubules switch occasionally into unfavorable configurations during elongation. , 2000, Journal of molecular biology.

[18]  P. Nurse,et al.  Targeted movement of cell end factors in fission yeast , 2003, Nature Cell Biology.

[19]  Liedewij Laan,et al.  Reconstitution of a microtubule plus-end tracking system in vitro , 2007, Nature.

[20]  I. Vetter,et al.  The Guanine Nucleotide-Binding Switch in Three Dimensions , 2001, Science.

[21]  M. Ikura,et al.  Crystal Structure of the Amino-terminal Microtubule-binding Domain of End-binding Protein 1 (EB1)* , 2003, Journal of Biological Chemistry.

[22]  S. Fuller,et al.  Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates , 1995, The Journal of cell biology.

[23]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[24]  R. Cross,et al.  Mal3 Masks Catastrophe Events in Schizosaccharomyces pombe Microtubules by Inhibiting Shrinkage and Promoting Rescue* , 2009, The Journal of Biological Chemistry.

[25]  H. Kueh,et al.  Structural Plasticity in Actin and Tubulin Polymer Dynamics , 2009, Science.

[26]  David Zwicker,et al.  Tracking single particles and elongated filaments with nanometer precision. , 2011, Biophysical journal.

[27]  P. Tittmann,et al.  The Schizosaccharomyces pombe EB1 Homolog Mal3p Binds and Stabilizes the Microtubule Lattice Seam , 2006, Cell.

[28]  Marcel Knossow,et al.  The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. , 2011, Journal of molecular biology.

[29]  Kenneth H Downing,et al.  An atomic-level mechanism for activation of the kinesin molecular motors , 2010, Proceedings of the National Academy of Sciences.

[30]  E. Nogales,et al.  Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly , 2005, Nature.

[31]  N. Galjart,et al.  Cytoplasmic linker proteins promote microtubule rescue in vivo , 2002, The Journal of cell biology.

[32]  William V Nicholson,et al.  Microtubule structure at 8 A resolution. , 2002, Structure.

[33]  A. Hyman,et al.  Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. , 1992, Molecular biology of the cell.

[34]  David J. Odde,et al.  Rapid Microtubule Self-Assembly Kinetics , 2011, Cell.

[35]  E. Nogales,et al.  Refined structure of alpha beta-tubulin at 3.5 A resolution. , 2001, Journal of molecular biology.

[36]  L. Amos,et al.  Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice , 2008, Nature Structural &Molecular Biology.

[37]  D. Odde,et al.  Microtubule Assembly Dynamics at the Nanoscale , 2007, Current Biology.

[38]  M. Steinmetz,et al.  Key interaction modes of dynamic +TIP networks. , 2006, Molecular cell.

[39]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[40]  Sonia Grego,et al.  EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. , 2002, Molecular biology of the cell.

[41]  Franck Perez,et al.  Detection of GTP-Tubulin Conformation in Vivo Reveals a Role for GTP Remnants in Microtubule Rescues , 2008, Science.

[42]  A. Hoenger,et al.  GTPγS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs) , 2011, Proceedings of the National Academy of Sciences.

[43]  D. Agard,et al.  The lattice as allosteric effector: Structural studies of αβ- and γ-tubulin clarify the role of GTP in microtubule assembly , 2008, Proceedings of the National Academy of Sciences.

[44]  W. Kabsch,et al.  The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. , 1997, Science.

[45]  Patrick A. Curmi,et al.  Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain , 2004, Nature.

[46]  S. Sprang,et al.  Structure of RGS4 Bound to AlF4 −-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis , 1997, Cell.

[47]  M. Steinmetz,et al.  Microtubule +TIPs at a glance , 2010, Journal of Cell Science.

[48]  S. Kandels-Lewis,et al.  CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites , 2008, The Journal of cell biology.

[49]  Kiheung Kim,et al.  Ko Kuei Chen: a pioneer of modern pharmacological research in China , 2022, Protein & cell.

[50]  M. Ikura,et al.  Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. , 2005, Molecular cell.

[51]  R. Wade,et al.  Microtubule structure at improved resolution. , 2001, Biochemistry.

[52]  Niels Galjart,et al.  Plus-End-Tracking Proteins and Their Interactions at Microtubule Ends , 2010, Current Biology.

[53]  M. Caplow,et al.  Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. , 1996, Molecular biology of the cell.

[54]  J. McIntosh,et al.  Lattice structure of cytoplasmic microtubules in a cultured Mammalian cell. , 2009, Journal of molecular biology.

[55]  Y. Goldman,et al.  Microtubule plus-end tracking by CLIP-170 requires EB1 , 2009, Proceedings of the National Academy of Sciences.

[56]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[57]  Kurt Wüthrich,et al.  An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal , 2009, Cell.

[58]  Ben M. Webb,et al.  Protein structure fitting and refinement guided by cryo-EM density. , 2008, Structure.

[59]  E. Mandelkow,et al.  Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study , 1991, The Journal of cell biology.

[60]  John A.G. Briggs,et al.  Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision , 2011, The Journal of cell biology.

[61]  I. Arnal,et al.  EB1 regulates microtubule dynamics and tubulin sheet closure in vitro , 2008, Nature Cell Biology.

[62]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.