Fragility analysis of wind-excited traffic signal structures

[1]  W. S. Lazarus-Barlow,et al.  THE NATURAL DURATION OF CANCER , 1924, British medical journal.

[2]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[3]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[4]  R. P. Kennedy,et al.  Probabilistic seismic safety study of an existing nuclear power plant , 1980 .

[5]  John W. Fisher,et al.  FATIGUE BEHAVIOR OF STEEL LIGHT POLES , 1981 .

[6]  M. Baucus Transportation Research Board , 1982 .

[7]  Paul H. Wirsching,et al.  Fatigue Reliability for Offshore Structures , 1984 .

[8]  J M South FATIGUE ANALYSIS OF OVERHEAD SIGN AND SIGNAL STRUCTURES. INTERIM REPORT , 1994 .

[9]  James R. McDonald,et al.  WIND LOAD EFFECTS ON SIGNS, LUMINAIRES, AND TRAFFIC SIGNAL STRUCTURES. FINAL REPORT , 1995 .

[10]  Robert J. Dexter,et al.  FATIGUE-RESISTANT DESIGN OF CANTILEVERED SIGNAL, SIGN, AND LIGHT SUPPORTS , 1998 .

[11]  Knut O. Ronold,et al.  Reliability-based fatigue design of wind-turbine rotor blades , 1999 .

[12]  R. P. Hoxey,et al.  Wind-induced fatigue loading of tubular steel lighting columns , 2001 .

[13]  Genda Chen,et al.  Fatigue Assessment of Traffic Signal Mast Arms Based on Field Test Data Under Natural Wind Gusts , 2001 .

[14]  Udo Peil,et al.  Fatigue of tubular steel lighting columns under wind load , 2002 .

[15]  J. D. Holmes,et al.  Fatigue life under along-wind loading — closed-form solutions , 2002 .

[16]  Karl H. Frank,et al.  FATIGUE STRENGTH OF SIGNAL MAST ARM CONNECTIONS , 2003 .

[17]  J. D. Holmes,et al.  Verification of closed-form solutions of fatigue life under along-wind loading , 2004 .

[18]  John B. Mander,et al.  Financial risk assessment methodology for natural hazards , 2006 .

[19]  John B. Mander,et al.  Incremental dynamic analysis applied to seismic financial risk assessment of bridges , 2007 .

[20]  Hector Cruzado,et al.  Risk assessment model for wind-induced fatigue failure of cantilever traffic signal structures , 2007 .

[21]  John W. van de Lindt,et al.  Development of a Semiprescriptive Selection Procedure for Reliability-Based Fatigue Design of High-Mast Lighting Structural Supports , 2007 .

[22]  Jay A. Puckett,et al.  USE OF WIND POWER MAPS TO ESTABLISH FATIGUE DESIGN CRITERIA FOR TRAFFIC SIGNAL AND HIGH-MAST STRUCTURES , 2008 .

[23]  Brendon A. Bradley,et al.  Computational and rapid expected annual loss estimation methodologies for structures , 2008 .

[24]  Chris Letchford,et al.  Wind-induced vibration of a traffic-signal-support structure with cantilevered tapered circular mast arm , 2010 .

[25]  John W. Fisher,et al.  Cost-Effective Connection Details for Highway Sign, Luminaire, and Traffic Signal Structures , 2011 .

[26]  John B. Mander,et al.  Direct loss model for seismically damaged structures , 2012 .

[27]  Giovanni Solari,et al.  Closed-Form Prediction of the Alongwind-Induced Fatigue of Structures , 2012 .

[28]  Chris Letchford,et al.  Wind tunnel studies of cantilever traffic signal structures , 2013 .

[29]  John B. Mander,et al.  Wind-induced traffic signal structure response: Experiments and reduction via helical arm strakes , 2014 .

[30]  John B. Mander,et al.  Natural Wind Response and Fatigue Assessment of a Cantilevered Traffic Signal Structure with Helical Arm Strakes , 2014 .

[31]  Kyle T. Wieghaus,et al.  Target-less computer vision for traffic signal structure vibration studies , 2015 .