Structural optimization of modular product families with application to car space frame structures

This paper extends classical structural optimization from single-product optimization to optimization of a whole family of products that have common modules. It integrates the family commonality problem with the finite element models of the structures. A general mathematical frame where optimization is seen as a balance between cost and performance is given. The most obvious cost function is mass, while performance is taken to be a weighted sum of compliances. As a case study, a car product family consisting of three products is presented. These three products are a base model, a seven-seat version, and a pickup version. The study shows how optimal results are effected by requiring modules to be shared between products. Loads emanating from prescribed acceleration fields that simulate crash situations are used. This is a proof-of-concept paper which is a first step toward including more general manufacturing costs than mass and performance measures other than compliance.