Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images

Motivation: Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain. Results: We introduce a fast and scalable algorithm for fully automated cell identification. We obtained the whole digital map of Purkinje cells in mouse cerebellum consisting of a set of 3D cell center coordinates. The method is accurate and we estimated an F1 measure of 0.96 using 56 representative volumes, totaling 1.09 GVoxel and containing 4138 manually annotated soma centers. Availability and implementation: Source code and its documentation are available at http://bcfind.dinfo.unifi.it/. The whole pipeline of methods is implemented in Python and makes use of Pylearn2 and modified parts of Scikit-learn. Brain images are available on request. Contact: paolo.frasconi@unifi.it Supplementary information: Supplementary data are available at Bioinformatics online.

[1]  Rogely Waite Boyce,et al.  Design-based Stereology , 2010, Toxicologic pathology.

[2]  R. Weiler,et al.  Chemical Clearing and Dehydration of GFP Expressing Mouse Brains , 2012, PloS one.

[3]  Kun Zhou,et al.  Iso-charts: stretch-driven mesh parameterization using spectral analysis , 2004, SGP '04.

[4]  Shaoqun Zeng,et al.  Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution , 2013, NeuroImage.

[5]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[6]  G. Iannello,et al.  Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. , 2012, Optics express.

[7]  Hans-Ulrich Dodt,et al.  Light sheet microscopy of living or cleared specimens , 2012, Current Opinion in Neurobiology.

[8]  A. Schierloh,et al.  Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain , 2007, Nature Methods.

[9]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[10]  Eugene W. Myers,et al.  Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging , 2013, BMC Bioinformatics.

[11]  Alicia Hidalgo,et al.  DeadEasy Mito-Glia: Automatic Counting of Mitotic Cells and Glial Cells in Drosophila , 2010, PloS one.

[12]  Razvan Pascanu,et al.  M L ] 2 0 A ug 2 01 3 Pylearn 2 : a machine learning research library , 2014 .

[13]  Javier DeFelipe,et al.  3D segmentations of neuronal nuclei from confocal microscope image stacks , 2013, Front. Neuroanat..

[14]  Davi D Bock,et al.  Volume electron microscopy for neuronal circuit reconstruction , 2012, Current Opinion in Neurobiology.

[15]  Fabian J. Theis,et al.  An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy , 2013, BMC Bioinformatics.

[16]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[17]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  D. Woodruff-Pak,et al.  Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to associative learning , 2006, Neuroscience.

[19]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[20]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[21]  Hanchuan Peng,et al.  Extensible visualization and analysis for multidimensional images using Vaa3D , 2014, Nature Protocols.

[22]  Joseph F. Murray,et al.  Supervised Learning of Image Restoration with Convolutional Networks , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[24]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[25]  P. R. Hof,et al.  Design-based stereology in neuroscience , 2005, Neuroscience.

[26]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[27]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[28]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[29]  P. Osten,et al.  Mapping brain circuitry with a light microscope , 2013, Nature Methods.

[30]  Flavio Keller,et al.  Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje cell survival , 2009, Neurobiology of Disease.

[31]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[32]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[33]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[34]  D Mayerich,et al.  Knife‐edge scanning microscopy for imaging and reconstruction of three‐dimensional anatomical structures of the mouse brain , 2008, Journal of microscopy.

[35]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[36]  M Yuzaki,et al.  Purification of Purkinje cells by fluorescence‐activated cell sorting from transgenic mice that express green fluorescent protein , 2001, The European journal of neuroscience.

[37]  Jeff W Lichtman,et al.  The rise of the 'projectome' , 2007, Nature Methods.

[38]  W. Denk,et al.  The Big and the Small: Challenges of Imaging the Brain’s Circuits , 2011, Science.

[39]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[40]  Giulio Iannello,et al.  TeraStitcher - A tool for fast automatic 3D-stitching of teravoxel-sized microscopy images , 2012, BMC Bioinformatics.

[41]  Steffen Prohaska,et al.  Large-Scale Automated Histology in the Pursuit of Connectomes , 2011, The Journal of Neuroscience.

[42]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[43]  Aaron S. Andalman,et al.  Structural and molecular interrogation of intact biological systems , 2013, Nature.

[44]  Hang Zhou,et al.  NeuroGPS: automated localization of neurons for brain circuits using L1 minimization model , 2013, Scientific Reports.