Neurulation of the cynomolgus monkey embryo achieved from 3D blastocyst culture

[1]  Jun Wu,et al.  Primate gastrulation and early organogenesis at single-cell resolution , 2022, Nature.

[2]  Liu Wang,et al.  A Uterus‐Inspired Niche Drives Blastocyst Development to the Early Organogenesis , 2022, Advanced science.

[3]  Christopher A. Penfold,et al.  Spatial profiling of early primate gastrulation in utero , 2022, Nature.

[4]  Lei Jia,et al.  A Single-Cell Characterization of Human Post-implantation Embryos Cultured In Vitro Delineates Morphogenesis in Primary Syncytialization , 2022, Frontiers in Cell and Developmental Biology.

[5]  Y. Chai,et al.  Embryonic requirements for Tcf12 in the development of the mouse coronal suture. , 2021, Development.

[6]  A. Scialdone,et al.  Single-cell transcriptomic characterization of a gastrulating human embryo , 2021, Nature.

[7]  E. Siggia,et al.  Human neural tube morphogenesis in vitro by geometric constraints , 2021, Nature.

[8]  A. Brivanlou,et al.  Self-organization of human dorsal-ventral forebrain structures by light induced SHH , 2021, Nature Communications.

[9]  Hongmei Wang,et al.  Human embryonic development: from peri-implantation to gastrulation. , 2021, Trends in cell biology.

[10]  J. Drouin,et al.  Control of mouse limb initiation and antero-posterior patterning by Meis transcription factors , 2021, Nature Communications.

[11]  Fan Guo,et al.  Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing. , 2021, Cell stem cell.

[12]  A. Tanay,et al.  A single-embryo, single-cell time-resolved model for mouse gastrulation , 2021, Cell.

[13]  C. R. Esteban,et al.  Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo , 2021, Cell.

[14]  Hadas Keren-Shaul,et al.  Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis , 2021, Nature.

[15]  Liu Wang,et al.  A uterus-inspired 3D niche drives embryo development beyond implantation , 2020 .

[16]  Thomas Laurell,et al.  Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient , 2020, Nature Biotechnology.

[17]  Jianping Fu,et al.  Modeling of human neurulation using bioengineered pluripotent stem cell culture. , 2020, Current opinion in biomedical engineering.

[18]  Yun Zheng,et al.  A developmental landscape of 3D-cultured human pre-gastrulation embryos , 2019, Nature.

[19]  Z. Li,et al.  Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche , 2019, Science Advances.

[20]  Yunlong Xiang,et al.  In vitro culture of cynomolgus monkey embryos beyond early gastrulation , 2019, Science.

[21]  J. I. Izpisúa Belmonte,et al.  Dissecting primate early post-implantation development using long-term in vitro embryo culture , 2019, Science.

[22]  A. Moffett,et al.  Development of the human placenta , 2019, Development.

[23]  G. Sanguinetti,et al.  Multi-omics profiling of mouse gastrulation at single cell resolution , 2019, Nature.

[24]  A. Brivanlou,et al.  Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment , 2019, Nature Biotechnology.

[25]  F. Tang,et al.  Reconstituting the transcriptome and DNA methylome landscapes of human implantation , 2019, Nature.

[26]  Chika Yokota,et al.  Spatiotemporal structure of cell fate decisions in murine neural crest , 2019, Science.

[27]  D. Lohnes,et al.  Role of Cdx factors in early mesodermal fate decisions , 2019, Development.

[28]  J. Marioni,et al.  A single-cell molecular map of mouse gastrulation and early organogenesis , 2019, Nature.

[29]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[30]  J. Utikal,et al.  Identification of Embryonic Neural Plate Border Stem Cells and Their Generation by Direct Reprogramming from Adult Human Blood Cells. , 2019, Cell stem cell.

[31]  Fan Guo,et al.  Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes , 2018, Cell Research.

[32]  B. D. de Bakker,et al.  The development of the human notochord , 2018, PloS one.

[33]  Srinivas C. Turaga,et al.  In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level , 2018, Cell.

[34]  Magdalena Zernicka-Goetz,et al.  Deconstructing and reconstructing the mouse and human early embryo , 2018, Nature Cell Biology.

[35]  J. Drenzek,et al.  Trophoblast differentiation, invasion and hormone secretion in a three-dimensional in vitro implantation model with rhesus monkey embryos , 2018, Reproductive Biology and Endocrinology.

[36]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[37]  Jelena Telenius,et al.  Functional characterisation of cis-regulatory elements governing dynamic Eomes expression in the early mouse embryo , 2017, Development.

[38]  Ana Rolo,et al.  Neural tube closure: cellular, molecular and biomechanical mechanisms , 2017, Development.

[39]  I. Okamoto,et al.  A developmental coordinate of pluripotency among mice, monkeys and humans , 2016, Nature.

[40]  A. Brivanlou,et al.  Self-organization of the in vitro attached human embryo , 2016, Nature.

[41]  Dusko Ilic,et al.  Self-organisation of the human embryo in the absence of maternal tissues , 2016, Nature Cell Biology.

[42]  M. Zernicka-Goetz,et al.  In vitro culture of mouse blastocysts beyond the implantation stages , 2014, Nature Protocols.

[43]  N. Osumi,et al.  Preparation of rat serum suitable for mammalian whole embryo culture. , 2014, Journal of visualized experiments : JoVE.

[44]  Magdalena Zernicka-Goetz,et al.  Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation , 2014, Cell.

[45]  Augusto Escalante,et al.  Zic2-Dependent Axon Midline Avoidance Controls the Formation of Major Ipsilateral Tracts in the CNS , 2013, Neuron.

[46]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[47]  A. Lumsden,et al.  The role of organizers in patterning the nervous system. , 2012, Annual review of neuroscience.

[48]  Hui Wang,et al.  Tcf/Lef repressors differentially regulate Shh-Gli target gene activation thresholds to generate progenitor patterning in the developing CNS , 2011, Development.

[49]  Ryan S. Udan,et al.  Preparation of rat serum for culturing mouse embryos. , 2011, Cold Spring Harbor protocols.

[50]  M. Goel,et al.  Understanding survival analysis: Kaplan-Meier estimate , 2010, International journal of Ayurveda research.

[51]  E. Sundström,et al.  Analysis of early human neural crest development. , 2010, Developmental biology.

[52]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[53]  D. Roden,et al.  Voltage-Gated Sodium Channels Are Required for Heart Development in Zebrafish , 2010, Circulation research.

[54]  Sung-Kook Hong,et al.  Transcriptional profiling of endogenous germ layer precursor cells identifies dusp4 as an essential gene in zebrafish endoderm specification , 2008, Proceedings of the National Academy of Sciences.

[55]  Marianne Bronner-Fraser,et al.  A gene regulatory network orchestrates neural crest formation , 2008, Nature Reviews Molecular Cell Biology.

[56]  Sheng-Ping L. Hwang,et al.  Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation , 2008, Development.

[57]  R. O’rahilly,et al.  The development of the neural crest in the human , 2007, Journal of anatomy.

[58]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[59]  M. Matise,et al.  Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord , 2004, Development.

[60]  Andrew J. Copp,et al.  The genetic basis of mammalian neurulation , 2003, Nature Reviews Genetics.

[61]  P. Brûlet,et al.  Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. , 2001, Development.

[62]  T. Jessell,et al.  A Homeodomain Protein Code Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural Tube , 2000, Cell.

[63]  R. Behringer,et al.  HNF3beta and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior-posterior polarity in the mouse embryo. , 1999, Development.

[64]  M. Saha,et al.  A labile period in the determination of the anterior-posterior axis during early neural development in Xenopus , 1992, Neuron.

[65]  A. Enders,et al.  Early stages of trophoblastic invasion of the maternal vascular system during implantation in the macaque and baboon. , 1991, The American journal of anatomy.

[66]  L. T. Chen,et al.  Development of mouse embryos in vitro: preimplantation to the limb bud stage. , 1982, Science.

[67]  Y. Hsu,et al.  In vitro development of individually cultured whole mouse embryos from blastocyst to early somite stage. , 1979, Developmental biology.

[68]  A. Enders Transition from lacunar to villous stage of implantation in the macaque, including establishment of the trophoblastic shell. , 1995, Acta anatomica.

[69]  R. O’rahilly,et al.  Neurulation in the normal human embryo. , 1994, Ciba Foundation symposium.

[70]  T. Sadler,et al.  Culture of early somite mouse embryos during organogenesis. , 1979, Journal of embryology and experimental morphology.

[71]  J. Rash,et al.  Development in vitro of mouse embryos from the two-cell egg stage to the early somite stage. , 1974, Journal of embryology and experimental morphology.