Coloring Points with Respect to Squares

We consider the problem of $2$-coloring geometric hypergraphs. Specifically, we show that there is a constant $m$ such that any finite set $\mathcal{S}$ of points in the plane can be $2$-colored such that every axis-parallel square that contains at least $m$ points from $\mathcal{S}$ contains points of both colors. Our proof is constructive, that is, it provides a polynomial-time algorithm for obtaining such a $2$-coloring. By affine transformations this result immediately applies also when considering homothets of a fixed parallelogram.

[1]  Saurabh Ray,et al.  Conflict-Free Coloring for Rectangle Ranges Using O(n.382) Colors , 2012, Discret. Comput. Geom..

[2]  János Pach,et al.  Coloring axis-parallel rectangles , 2010, J. Comb. Theory, Ser. A.

[3]  Balázs Keszegh,et al.  Proper Coloring of Geometric Hypergraphs , 2017, Symposium on Computational Geometry.

[4]  Jean Cardinal,et al.  Making Triangles Colorful , 2013, J. Comput. Geom..

[5]  Matt Gibson,et al.  Decomposing Coverings and the Planar Sensor Cover Problem , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[6]  Michiel H. M. Smid,et al.  On the Stretch Factor of Convex Delaunay Graphs , 2008, ISAAC.

[7]  Dömötör Pálvölgyi,et al.  Indecomposable Coverings with Concave Polygons , 2010, Discret. Comput. Geom..

[8]  János Pach,et al.  Covering the plane with convex polygons , 1986, Discret. Comput. Geom..

[9]  Balázs Keszegh,et al.  Weak Conflict-Free Colorings of Point Sets and Simple Regions , 2007, CCCG.

[10]  Timothy M. Chan Conflict-free coloring of points with respect to rectangles and approximation algorithms for discrete independent set , 2012, SoCG '12.

[11]  J. Pach,et al.  Conflict-free colorings , 2003 .

[12]  István Kovács Indecomposable Coverings with Homothetic Polygons , 2015, Discret. Comput. Geom..

[13]  Rom Pinchasi,et al.  On coloring points with respect to rectangles , 2013, J. Comb. Theory, Ser. A.

[14]  Balázs Keszegh,et al.  More on decomposing coverings by octants , 2015, J. Comput. Geom..

[15]  J. Pach Decomposition of multiple packing and covering , 1980 .

[16]  Matt Gibson,et al.  Optimally Decomposing Coverings with Translates of a Convex Polygon , 2011, Discret. Comput. Geom..

[17]  Jean Cardinal,et al.  Decomposition of Multiple Coverings into More Parts , 2008, SODA.

[18]  Balázs Keszegh Coloring half-planes and bottomless rectangles , 2012, Comput. Geom..

[19]  J. Pach,et al.  Survey on Decomposition of Multiple Coverings , 2013 .

[20]  Shakhar Smorodinsky,et al.  Polychromatic coloring for half-planes , 2012, J. Comb. Theory, Ser. A.

[21]  Géza Tóth,et al.  Convex Polygons are Cover-Decomposable , 2010, Discret. Comput. Geom..

[22]  Prosenjit Bose,et al.  On the Stretch Factor of Convex Delaunay Graphs , 2010, J. Comput. Geom..

[23]  János Pach,et al.  Coloring Axis-Parallel Rectangles , 2007, KyotoCGGT.

[24]  Gábor Tardos,et al.  Multiple Coverings of the Plane with Triangles , 2007, Discret. Comput. Geom..

[25]  Dömötör Pálvölgyi Indecomposable coverings with unit discs , 2013, ArXiv.

[26]  János Pach,et al.  Delaunay graphs of point sets in the plane with respect to axis‐parallel rectangles , 2008, SODA '08.

[27]  Shakhar Smorodinsky,et al.  Conflict-Free Coloring and its Applications , 2010, ArXiv.

[28]  János Pach,et al.  Decomposition of multiple coverings into many parts , 2007, SCG '07.

[29]  Balázs Keszegh,et al.  Octants are cover-decomposable into many coverings , 2014, Comput. Geom..

[30]  Sariel Har-Peled,et al.  Conflict-Free Coloring of Points and Simple Regions in the Plane , 2005, Discret. Comput. Geom..

[31]  Balázs Keszegh,et al.  Convex Polygons are Self-Coverable , 2014, Discret. Comput. Geom..

[32]  Jean Cardinal,et al.  Making Octants Colorful and Related Covering Decomposition Problems , 2014, SODA.

[33]  János Pach,et al.  Unsplittable Coverings in the Plane , 2013, WG.

[34]  Vom Fachbereich Informatik,et al.  Bisectors and Voronoi Diagrams for Convex Distance Functions , 2000 .

[35]  Deniz Sariöz Generalized Delaunay Graphs with respect to any Convex Set are Plane Graphs , 2010, ArXiv.

[36]  Balázs Keszegh,et al.  Octants are Cover Decomposable , 2011, Electron. Notes Discret. Math..

[37]  János Pach,et al.  Indecomposable Coverings , 2005, Canadian Mathematical Bulletin.

[38]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.