Coloring Points with Respect to Squares
暂无分享,去创建一个
[1] Saurabh Ray,et al. Conflict-Free Coloring for Rectangle Ranges Using O(n.382) Colors , 2012, Discret. Comput. Geom..
[2] János Pach,et al. Coloring axis-parallel rectangles , 2010, J. Comb. Theory, Ser. A.
[3] Balázs Keszegh,et al. Proper Coloring of Geometric Hypergraphs , 2017, Symposium on Computational Geometry.
[4] Jean Cardinal,et al. Making Triangles Colorful , 2013, J. Comput. Geom..
[5] Matt Gibson,et al. Decomposing Coverings and the Planar Sensor Cover Problem , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[6] Michiel H. M. Smid,et al. On the Stretch Factor of Convex Delaunay Graphs , 2008, ISAAC.
[7] Dömötör Pálvölgyi,et al. Indecomposable Coverings with Concave Polygons , 2010, Discret. Comput. Geom..
[8] János Pach,et al. Covering the plane with convex polygons , 1986, Discret. Comput. Geom..
[9] Balázs Keszegh,et al. Weak Conflict-Free Colorings of Point Sets and Simple Regions , 2007, CCCG.
[10] Timothy M. Chan. Conflict-free coloring of points with respect to rectangles and approximation algorithms for discrete independent set , 2012, SoCG '12.
[11] J. Pach,et al. Conflict-free colorings , 2003 .
[12] István Kovács. Indecomposable Coverings with Homothetic Polygons , 2015, Discret. Comput. Geom..
[13] Rom Pinchasi,et al. On coloring points with respect to rectangles , 2013, J. Comb. Theory, Ser. A.
[14] Balázs Keszegh,et al. More on decomposing coverings by octants , 2015, J. Comput. Geom..
[15] J. Pach. Decomposition of multiple packing and covering , 1980 .
[16] Matt Gibson,et al. Optimally Decomposing Coverings with Translates of a Convex Polygon , 2011, Discret. Comput. Geom..
[17] Jean Cardinal,et al. Decomposition of Multiple Coverings into More Parts , 2008, SODA.
[18] Balázs Keszegh. Coloring half-planes and bottomless rectangles , 2012, Comput. Geom..
[19] J. Pach,et al. Survey on Decomposition of Multiple Coverings , 2013 .
[20] Shakhar Smorodinsky,et al. Polychromatic coloring for half-planes , 2012, J. Comb. Theory, Ser. A.
[21] Géza Tóth,et al. Convex Polygons are Cover-Decomposable , 2010, Discret. Comput. Geom..
[22] Prosenjit Bose,et al. On the Stretch Factor of Convex Delaunay Graphs , 2010, J. Comput. Geom..
[23] János Pach,et al. Coloring Axis-Parallel Rectangles , 2007, KyotoCGGT.
[24] Gábor Tardos,et al. Multiple Coverings of the Plane with Triangles , 2007, Discret. Comput. Geom..
[25] Dömötör Pálvölgyi. Indecomposable coverings with unit discs , 2013, ArXiv.
[26] János Pach,et al. Delaunay graphs of point sets in the plane with respect to axis‐parallel rectangles , 2008, SODA '08.
[27] Shakhar Smorodinsky,et al. Conflict-Free Coloring and its Applications , 2010, ArXiv.
[28] János Pach,et al. Decomposition of multiple coverings into many parts , 2007, SCG '07.
[29] Balázs Keszegh,et al. Octants are cover-decomposable into many coverings , 2014, Comput. Geom..
[30] Sariel Har-Peled,et al. Conflict-Free Coloring of Points and Simple Regions in the Plane , 2005, Discret. Comput. Geom..
[31] Balázs Keszegh,et al. Convex Polygons are Self-Coverable , 2014, Discret. Comput. Geom..
[32] Jean Cardinal,et al. Making Octants Colorful and Related Covering Decomposition Problems , 2014, SODA.
[33] János Pach,et al. Unsplittable Coverings in the Plane , 2013, WG.
[34] Vom Fachbereich Informatik,et al. Bisectors and Voronoi Diagrams for Convex Distance Functions , 2000 .
[35] Deniz Sariöz. Generalized Delaunay Graphs with respect to any Convex Set are Plane Graphs , 2010, ArXiv.
[36] Balázs Keszegh,et al. Octants are Cover Decomposable , 2011, Electron. Notes Discret. Math..
[37] János Pach,et al. Indecomposable Coverings , 2005, Canadian Mathematical Bulletin.
[38] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.