Asymmetric Gaussian steering: When Alice and Bob disagree

Asymmetric steering is an effect whereby an inseparable bipartite system can be found to be described by either quantum mechanics or local hidden variable theories depending on which one of Alice or Bob makes the required measurements. We show that, even with an inseparable bipartite system, situations can arise where Gaussian measurements on one half are not sufficient to answer the fundamental question of which theory gives an adequate description and the whole system must be considered. This phenomenon is possible because of an asymmetry in the definition of the original Einstein-Podolsky-Rosen paradox and in this article we show theoretically that it may be demonstrated, at least in the case where Alice and Bob can only make Gaussian measurements, using the intracavity nonlinear coupler. © 2010 The American Physical Society

[1]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[2]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  C. Gardiner,et al.  Generalised P-representations in quantum optics , 1980 .

[5]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[6]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[7]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[8]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[9]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[10]  J. Peřina,et al.  Quantum statistics and dynamics of Kerr nonlinear couplers , 1997 .

[11]  M. Olsen,et al.  Quantum correlations in second harmonic generation with a detuned cavity , 1999 .

[12]  J. Peřina,et al.  Quantum-phase properties of the Kerr couplers , 1999 .

[13]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[14]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[15]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[16]  J. Ignacio Cirac,et al.  Entanglement transformations of pure Gaussian states , 2003, Quantum Inf. Comput..

[17]  M. Olsen Bright entanglement in the intracavity nonlinear coupler , 2006, quant-ph/0603037.

[18]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[19]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[20]  M. K. Olsen,et al.  Bright bichromatic entanglement and quantum dynamics of sum frequency generation , 2007, 0711.4870.

[21]  Maira Amezcua,et al.  Quantum Optics , 2012 .