Utility-based QoS optimisation strategy for multi-criteria scheduling on the grid

The paper presents quality of service (QoS) optimisation strategy for multi-criteria scheduling on the grid, based on a mathematical QoS model and a distributed iterative algorithm. Three QoS criteria are considered, namely payment, deadline and reliability, which are formulated as utility function. The optimisation problem is split into two parts: task optimisation performed on behalf of the user and resource optimisation performed on behalf of the grid. The strategy employs three types of agents: task agents responsible for task optimisation, computation resource and network resource agents responsible for resource optimisation. The agents apply economic models for optimisation purposes. Dynamic programming is used to optimise the total system utility function in terms of an iterative algorithm. The objective of multi-criteria scheduling is to maximise the global utility of the system. This paper proposes an iterative scheduling algorithm that is used to perform QoS optimisation-based multi-criteria scheduling. The proposed QoS optimisation-based multi-criteria scheduling problem solution has been practically examined by simulation experiments.

[1]  Simin Nadjm-Tehrani,et al.  Time-aware utility-based QoS optimization , 2003, 15th Euromicro Conference on Real-Time Systems, 2003. Proceedings..

[2]  Li Chunlin,et al.  A mobile agent platform based on tuple space coordination , 2002 .

[3]  Jennifer Healey,et al.  QoS-Constrained Resource Allocation for a Grid-Based Multiple Source Electrocardiogram Application , 2004, ICCSA.

[4]  Daniel P. Siewiorek,et al.  A scalable solution to the multi-resource QoS problem , 1999, Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No.99CB37054).

[5]  Layuan Li,et al.  Competitive proportional resource allocation policy for computational grid , 2004, Future Gener. Comput. Syst..

[6]  Atakan Dogan,et al.  A comparison of static QoS-based scheduling heuristics for a meta-task with multiple QoS dimensions in heterogeneous computing , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[7]  Li Chunlin,et al.  Apply agent to build grid service management , 2003 .

[8]  Layuan Li,et al.  Apply agent to build grid service management , 2003, J. Netw. Comput. Appl..

[9]  Daniel P. Siewiorek,et al.  On quality of service optimization with discrete QoS options , 1999, Proceedings of the Fifth IEEE Real-Time Technology and Applications Symposium.

[10]  Ian T. Foster,et al.  End-to-end quality of service for high-end applications , 2004, Comput. Commun..

[11]  John P. Lehoczky,et al.  Integrated resource management and scheduling with multi-resource constraints , 2004, 25th IEEE International Real-Time Systems Symposium.

[12]  Rajkumar Buyya,et al.  A Deadline and Budget Constrained Cost-Time Optimisation Algorithm for Scheduling Task Farming Applications on Global Grids , 2002, ArXiv.

[13]  Layuan Li,et al.  The use of economic agents under price driven mechanism in grid resource management , 2004, J. Syst. Archit..

[14]  John P. Lehoczky,et al.  Scalable resource allocation for multi-processor QoS optimization , 2003, 23rd International Conference on Distributed Computing Systems, 2003. Proceedings..

[15]  Anne H. H. Ngu,et al.  QoS computation and policing in dynamic web service selection , 2004, WWW Alt. '04.

[16]  Kang G. Shin,et al.  User-Level QoS-Adaptive Resource Management in Server End-Systems , 2003, IEEE Trans. Computers.

[17]  Li Chunlin,et al.  A distributed utility-based two level market solution for optimal resource scheduling in computational grid , 2005 .

[18]  Layuan Li,et al.  Integrate software agents and CORBA in computational grid , 2003, Comput. Stand. Interfaces.

[19]  Anne H. H. Ngu,et al.  QoS-aware middleware for Web services composition , 2004, IEEE Transactions on Software Engineering.

[20]  L. Li,et al.  A QoS-guaranteed multicast routing protocol , 2004, Comput. Commun..

[21]  Chunlin Li,et al.  Utility driven dynamic resource allocation using competitive markets in computational grid , 2005, Adv. Eng. Softw..

[22]  Li Chunlin,et al.  Agent framework to support the computational grid , 2004 .

[23]  Layuan Li,et al.  Agent framework to support the computational grid , 2004, J. Syst. Softw..

[24]  Omer F. Rana,et al.  QoS Adaptation in Service-Oriented Grids , 2003, Middleware Workshops.

[25]  Atakan Dogan,et al.  Scheduling Independent Tasks with QoS Requirements in Grid Computing with Time-Varying Resource Prices , 2002, GRID.

[26]  Li Chunlin,et al.  The use of economic agents under price driven mechanism in grid resource management , 2004 .

[27]  Omer F. Rana,et al.  Supporting QoS-based discovery in service-oriented Grids , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[28]  Li Chunlin,et al.  Multi economic agent interaction for optimizing the aggregate utility of grid users in computational grid , 2006, Applied Intelligence.

[29]  Layuan Li,et al.  Multi economic agent interaction for optimizing the aggregate utility of grid users in computational grid , 2006, Appl. Intell..

[30]  Layuan Li,et al.  A distributed utility-based two level market solution for optimal resource scheduling in computational grid , 2005, Parallel Comput..

[31]  Li Chunlin,et al.  Integrate software agents and CORBA in computational grid , 2003 .

[32]  Daniel A. Menascé,et al.  QoS in Grid Computing , 2004, IEEE Internet Comput..

[33]  David Abramson,et al.  A Computational Economy for Grid Computing and its Implementation in the Nimrod-G Resource Brok , 2001, Future Gener. Comput. Syst..

[34]  Li Chunlin,et al.  A distributed QoS-Aware multicast routing protocol , 2003, Acta Informatica.

[35]  Layuan Li,et al.  A distributed QoS-Aware multicast routing protocol , 2003, Acta Informatica.

[36]  Sanjay Jha,et al.  G-QoSM: Grid Service Discovery Using QoS Properties , 2002, Comput. Artif. Intell..