A software tool for visualization of molecular face (VMF) by improving marching cubes algorithm

Abstract Visualization of the molecular face (VMF) is a software tool for 3D visualization of the molecular face model in terms of molecular face theory. VMF is achieved on the Linux platform by adopting C language programming and OpenGL graphics standards. The Marching Cubes (MC) algorithm forms an important part of the VMF. We are dedicated to improving the MC algorithm so as to better meet the reconstruction of molecular face. First, signs of vertices in the cell are used to define the configurations. Second, binary digits are used to denote faces, vertices and edges of the cell. Third, configurations are classified into three types, for which different algorithms of triangulation are used. Furthermore, the temporal and spatial efficiencies of the algorithm are improved by using the coherence of the neighbor cells and optimizing storage structure, respectively. Finally, interactive operation functions and visualization of the molecular face model in real time are realized. In this article, details of the improved MC algorithm are described, and the analytical results for several typical datasets of molecular graphics demonstrate the correctness and effectiveness of our software. The surface area and volume of molecular surface are also given in this paper. The VMF can provide technical support to researchers working in related fields of data visualization.

[1]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[2]  Zhong-Zhi Yang,et al.  Method and algorithm of obtaining the molecular intrinsic characteristic contours (MICCs) of organic molecules , 2005, J. Comput. Chem..

[3]  Thomas Lewiner,et al.  Efficient Implementation of Marching Cubes' Cases with Topological Guarantees , 2003, J. Graphics, GPU, & Game Tools.

[4]  Heinrich Müller,et al.  Adaptive generation of surfaces in volume data , 2005, The Visual Computer.

[5]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[6]  Erik Abrahamsson,et al.  BioVEC: a program for biomolecule visualization with ellipsoidal coarse-graining. , 2009, Journal of molecular graphics & modelling.

[7]  Roberto Scopigno,et al.  Discretized Marching Cubes , 1994, Proceedings Visualization '94.

[8]  Zhong-Zhi Yang,et al.  Insight into markovnikov reactions of alkenes in terms of ab initio and molecular face theory. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  M. Doyley,et al.  Parametric Subharmonic Imaging Using a Commercial Intravascular Ultrasound Scanner , 2012, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[10]  Roberto Scopigno,et al.  Decreasing isosurface complexity via discrete fitting , 2000, Comput. Aided Geom. Des..

[11]  Bending frustration of lipid-water mesophases based on cubic minimal surfaces. , 2001, cond-mat/0102466.

[12]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[13]  Mohan S. Kankanhalli,et al.  Adaptive marching cubes , 1995, The Visual Computer.

[14]  Wolfgang Heiden,et al.  Fast generation of molecular surfaces from 3D data fields with an enhanced “marching cube” algorithm , 1993, J. Comput. Chem..

[15]  Hong Yi,et al.  A survey of the marching cubes algorithm , 2006, Comput. Graph..

[16]  Zhong-Zhi Yang,et al.  A characteristic molecular contour evaluated by a theoretical method , 1998 .

[17]  Bing-Yu Chen,et al.  Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data , 2005, Comput. Graph. Forum.

[18]  Klaus Schulten,et al.  GPU-accelerated molecular modeling coming of age. , 2010, Journal of molecular graphics & modelling.

[19]  Minxin Chen,et al.  riangulated manifold meshing method preserving molecular surface topology , 2012 .

[20]  E. Davidson,et al.  Evaluation of a characteristic atomic radius by an ab initio method , 1997 .

[21]  Bernd Beck,et al.  A Surface-Integral Model for Log POW , 2010, J. Chem. Inf. Model..

[22]  J D Gans,et al.  Qmol: a program for molecular visualization on Windows-based PCs. , 2001, Journal of molecular graphics & modelling.

[23]  Iñaki Tuñón,et al.  GEPOL: An improved description of molecular surfaces II. Computing the molecular area and volume , 1991 .

[24]  Hans-Peter Seidel,et al.  High‐speed Marching Cubes using HistoPyramids , 2008, Comput. Graph. Forum.

[25]  Duu-Jong Lee,et al.  Fluorecent staining for study of extracellular polymeric substances in membrane biofouling layers. , 2006, Environmental science & technology.

[26]  Matthieu Chavent,et al.  MetaMol: high-quality visualization of molecular skin surface. , 2008, Journal of molecular graphics & modelling.

[27]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[28]  Marc Donias,et al.  Simplified Marching Cubes: an efficient discretization scheme for simulations of deposition/ablation in complex media , 2011 .

[29]  Jayaram K. Udupa,et al.  Fast surface tracking in three-dimensional binary images , 1989, Comput. Vis. Graph. Image Process..

[30]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[31]  Molecular shape, dimensions, and shape selective catalysis , 2003 .

[32]  Jason Dykes,et al.  Map design and visualization , 1993 .

[33]  Dipesh Bhattarai,et al.  Atomistic visualization: space-time multiresolution integration of data analysis and rendering. , 2009, Journal of molecular graphics & modelling.

[34]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[35]  Roberto Scopigno,et al.  A modified look-up table for implicit disambiguation of Marching Cubes , 1994, The Visual Computer.

[36]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[37]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[38]  E LorensenWilliam,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987 .

[39]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[40]  J Andrew McCammon,et al.  Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. , 2008, Journal of molecular graphics & modelling.

[41]  M. Spackman,et al.  Molecular surfaces from the promolecule: A comparison with Hartree–Fock ab initio electron density surfaces , 2000 .

[42]  Zhong-Zhi Yang,et al.  MOLECULAR FACE — A NOVEL MOLECULAR MODEL SHOWING BOTH MOLECULAR SPATIAL CONTOUR AND FRONTIER ELECTRON DENSITY , 2008 .

[43]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[44]  Mark Hall,et al.  Adaptive polygonalization of implicitly defined surfaces , 1990, IEEE Computer Graphics and Applications.

[45]  Chong Hak Chae,et al.  Novel Receptor Surface Approach for 3D-QSAR: The Weighted Probe Interaction Energy Method , 2004, J. Chem. Inf. Model..

[46]  Bernd Hamann,et al.  Crusta: A new virtual globe for real-time visualization of sub-meter digital topography at planetary scales , 2011, Comput. Geosci..

[47]  Bernd Hamann,et al.  Visualizing and modeling scattered multivariate data , 1991, IEEE Computer Graphics and Applications.

[48]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[49]  Timothy Clark,et al.  A numerical self-consistent reaction field (SCRF) model for ground and excited states in NDDO-based methods , 1993 .

[50]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[51]  Emili Besalú,et al.  Quantum mechanical origin of QSAR: theory and applications , 2000 .

[52]  Timothy Clark,et al.  Surface-Integral QSPR Models: Local Energy Properties , 2005, J. Chem. Inf. Model..

[53]  Sergey V. Matveyev Approximation of isosurface in the Marching Cube: ambiguity problem , 1994, Proceedings Visualization '94.

[54]  Arthur W. Toga,et al.  Surface mapping brain function on 3D models , 1990, IEEE Computer Graphics and Applications.

[55]  Bernd Beck,et al.  QM/NN QSPR Models with Error Estimation: Vapor Pressure and LogP , 2000, J. Chem. Inf. Comput. Sci..

[56]  Zesheng Tang,et al.  Efficient magnetohydrodynamic simulations on graphics processing units with CUDA , 2009, Comput. Phys. Commun..

[57]  E LorensenWilliam,et al.  Decimation of triangle meshes , 1992 .