Cluster dynamics modeling of Mn-Ni-Si precipitates in ferritic-martensitic steel under irradiation

[1]  D. Morgan,et al.  Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels , 2017, 1707.08072.

[2]  S. Dudarev,et al.  Chromium-vacancy clusters in dilute bcc Fe-Cr alloys: an ab initio study , 2017, 1703.02767.

[3]  K. Sun,et al.  Effect of irradiation mode on the microstructure of self-ion irradiated ferritic-martensitic alloys , 2015 .

[4]  D. Morgan,et al.  Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys , 2015 .

[5]  P. Pareige,et al.  Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe–Cr alloys – Comparison to neutron irradiation , 2015 .

[6]  P. Wells,et al.  Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels , 2014 .

[7]  K. Sun,et al.  Emulation of reactor irradiation damage using ion beams , 2014 .

[8]  G. Odette,et al.  Microstructural changes in a neutron-irradiated Fe–15 at.%Cr alloy , 2014 .

[9]  L. Messina,et al.  Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys , 2014 .

[10]  D. Morgan,et al.  Thermodynamic models of low-temperature Mn-Ni-Si precipitation in reactor pressure vessel steels , 2014 .

[11]  G. Bonny,et al.  Monte Carlo study of decorated dislocation loops in FeNiMnCu model alloys , 2014 .

[12]  G. Was,et al.  A systematic study of radiation-induced segregation in ferritic-martensitic alloys , 2013 .

[13]  F. Bergner,et al.  Critical assessment of Cr-rich precipitates in neutron-irradiated Fe–12 at%Cr: Comparison of SANS and APT , 2013 .

[14]  R. Nanstad,et al.  Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences , 2013 .

[15]  D. Morgan,et al.  Dependence on grain boundary structure of radiation induced segregation in a 9 wt.% Cr model ferritic/martensitic steel , 2013 .

[16]  D. Bhattacharyya,et al.  Phase stability of an HT-9 duct irradiated in FFTF , 2012 .

[17]  J. Penisten The Mechanism of Radiation-Induced Segregation in Ferritic-Martensitic Steels. , 2012 .

[18]  P. Pareige,et al.  Effect of neutron-irradiation on the microstructure of a Fe-12at.%Cr alloy , 2011 .

[19]  Z. Jiao,et al.  Segregation behavior in proton- and heavy-ion-irradiated ferritic–martensitic alloys , 2011 .

[20]  G. Sha,et al.  A comparison of the structure of solute clusters formed during thermal ageing and irradiation. , 2011, Ultramicroscopy.

[21]  V. Shankar,et al.  Phase stability in proton and heavy ion irradiated ferritic-martensitic alloys , 2011 .

[22]  J. Busby,et al.  Radiation-Induced Segregation and Phase Stability in Ferritic–Martensitic Alloy T 91 , 2011 .

[23]  Thomas Jourdan,et al.  Influence of cluster mobility on Cu precipitation in α-Fe: A cluster dynamics modeling , 2010 .

[24]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[25]  F. Garner,et al.  Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443 °C , 2009 .

[26]  V. Slezov Kinetics of First Order Phase Transitions , 2009 .

[27]  Randy K Nanstad,et al.  Predictive reactor pressure vessel steel irradiation embrittlement models: Issues and opportunities , 2009 .

[28]  V. Pomjakushin,et al.  On the crystal structure of the Mn–Ni–Si G-phase , 2009 .

[29]  G. Neumann,et al.  Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data , 2008 .

[30]  R Bullough,et al.  Effect of the alpha-gamma phase transition on the stability of dislocation loops in bcc iron. , 2008, Physical review letters.

[31]  Sudook A. Kim,et al.  Elastic constants and internal friction of martensitic steel, ferritic-pearlitic steel, and α-iron , 2007 .

[32]  Charlotte Becquart,et al.  Atomic kinetic Monte Carlo model based on ab initio data: Simulation of microstructural evolution under irradiation of dilute Fe–CuNiMnSi alloys , 2007 .

[33]  J. Busby,et al.  Microstructural evolution of proton irradiated T91 , 2006 .

[34]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[35]  T. Yamamoto,et al.  On the effect of dose rate on irradiation hardening of RPV steels , 2005 .

[36]  J. Schmelzer,et al.  Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions. , 2004, The Journal of chemical physics.

[37]  Chu-Chun Fu,et al.  Stability and mobility of mono- and di-interstitials in alpha-Fe. , 2004, Physical review letters.

[38]  J. Schmelzer,et al.  Dynamics of first-order phase transitions in multicomponent systems: a new theoretical approach. , 2004, Journal of colloid and interface science.

[39]  J. Schmelzer A new approach to nucleation theory and its application to phase formation processes in glass-forming melts , 2004 .

[40]  J. M. Perlado,et al.  Mechanism of formation and growth of <100> interstitial loops in ferritic materials. , 2002, Physical review letters.

[41]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[42]  Roger E. Stoller,et al.  Modeling of microstructure evolution in austenitic stainless steels irradiated under light water reactor condition , 2001 .

[43]  G. E. Lucas,et al.  Recent progress in understanding reactor pressure vessel steel embrittlement , 1998 .

[44]  Brian D. Wirth,et al.  A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels , 1997 .

[45]  B. Wirth,et al.  A lattice Monte Carlo simulation of nanophase compositions and structures in irradiated pressure vessel Fe-Cu-Ni-Mn-Si steels , 1997 .

[46]  A. Mateo,et al.  Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel , 1997 .

[47]  G. R. Odette,et al.  Radiation Induced Microstructural Evolution in Reactor Pressure Vessel Steels , 1994 .

[48]  P. Maziasz,et al.  Microstructural evolution in annealed austenitic steels during neutron irradiation , 1987 .

[49]  W. Wolfer Drift forces on vacancies and interstitials in alloys with radiation-induced segregation , 1983 .

[50]  J. Gunton Kinetics of First-Order Phase Transitions , 1983 .

[51]  A. Brailsford,et al.  The theory of sink strengths , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[52]  H. Wiedersich,et al.  A theory of radiation-induced segregation in concentrated alloys☆ , 1979 .

[53]  G. M. Pound,et al.  Nucleation of a second solid phase along dislocations , 1973, Metallurgical and Materials Transactions B.

[54]  J. Cahn Nucleation on dislocations , 1957 .

[55]  A. Foreman Dislocation energies in anisotropic crystals , 1955 .