Modeling of corona characteristics in a wire-duct precipitator using the charge simulation technique

The charge simulation technique has been adapted to model the electrostatic and the corona characteristics in clean air of a duct-type electrostatic precipitator. The study involves the evaluation of the electric potential, electric field, and charge density in the interelectrode space as a function of corona current. The results show good agreement with published experimental data. The method developed can be applied to other geometries in the presence of space charge. The commonly used assumption that the space charge affects the magnitude but not the direction of the electric field is shown to be inadequate for large values of corona current. Also, the effect of using different values for the mobility of negative ions is presented.