Metabolic rewiring in melanoma

[1]  L. Galluzzi,et al.  Mitochondrial metabolism and cancer , 2017, Cell Research.

[2]  Eugenia G. Giannopoulou,et al.  Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH , 2015, Science.

[3]  M. Bergo,et al.  Antioxidants can increase melanoma metastasis in mice , 2015, Science Translational Medicine.

[4]  S. Leung,et al.  PDK1-Dependent Metabolic Reprogramming Dictates Metastatic Potential in Breast Cancer. , 2015, Cell metabolism.

[5]  R. Deberardinis,et al.  Oxidative stress inhibits distant metastasis by human melanoma cells , 2015, Nature.

[6]  N. Dhomen,et al.  Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells , 2015, Molecular oncology.

[7]  P. Tamayo,et al.  Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling. , 2015, Molecular cell.

[8]  M. V. Heiden,et al.  Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells , 2015, Cell.

[9]  J. Rutter,et al.  You Down With ETC? Yeah, You Know D! , 2015, Cell.

[10]  A. Bosserhoff,et al.  Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells , 2015, Oncotarget.

[11]  R. Lo,et al.  Vemurafenib resistance reprograms melanoma cells towards glutamine dependence , 2015, Journal of Translational Medicine.

[12]  M. Feldman,et al.  ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. , 2015, The Journal of clinical investigation.

[13]  D. Sabatini,et al.  An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis , 2015, Cell.

[14]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[15]  Xiaoyu Liang,et al.  Upregulation of cytosolic phosphoenolpyruvate carboxykinase is a critical metabolic event in melanoma cells that repopulate tumors. , 2015, Cancer research.

[16]  R. Deberardinis,et al.  Metabolic pathways promoting cancer cell survival and growth , 2015, Nature Cell Biology.

[17]  P. Guldberg,et al.  Molecular drivers of cellular metabolic reprogramming in melanoma. , 2015, Trends in molecular medicine.

[18]  Boris Ratnikov,et al.  Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma , 2015, Oncotarget.

[19]  Xian Chen,et al.  Redox regulation of Rac1 by thiol oxidation. , 2015, Free radical biology & medicine.

[20]  S. Inoue,et al.  Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. , 2015, Cancer cell.

[21]  T. Graeber,et al.  Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma , 2014, Nature Communications.

[22]  William J. Israelsen,et al.  Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. , 2014, Molecular cell.

[23]  D. Fisher,et al.  The melanoma revolution: From UV carcinogenesis to a new era in therapeutics , 2014, Science.

[24]  Jianxin Xie,et al.  A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. , 2014, Molecular cell.

[25]  R. Deberardinis,et al.  Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. , 2014, Molecular cell.

[26]  Christian M. Metallo,et al.  Regulation of substrate utilization by the mitochondrial pyruvate carrier. , 2014, Molecular cell.

[27]  E. Cheng,et al.  Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. , 2014, Molecular cell.

[28]  Zhandong Liu,et al.  Serine catabolism regulates mitochondrial redox control during hypoxia. , 2014, Cancer discovery.

[29]  K. Struhl,et al.  Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells , 2014, Proceedings of the National Academy of Sciences.

[30]  K. Vousden,et al.  Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. , 2014, Cell reports.

[31]  N. Chandel,et al.  ROS Function in Redox Signaling and Oxidative Stress , 2014, Current Biology.

[32]  T. Shlomi,et al.  Quantitative flux analysis reveals folate-dependent NADPH production , 2014, Nature.

[33]  Adam M. Feist,et al.  Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. , 2014, Molecular cell.

[34]  K. Wellen,et al.  Pyruvate kinase M2: regulatory circuits and potential for therapeutic intervention. , 2014, Current pharmaceutical design.

[35]  Bingying Zhou,et al.  Rho GTPases, oxidation, and cell redox control , 2014, Small GTPases.

[36]  I. Amelio,et al.  Serine and glycine metabolism in cancer☆ , 2014, Trends in biochemical sciences.

[37]  K. Flaherty,et al.  Pathways and therapeutic targets in melanoma , 2014, Oncotarget.

[38]  B. Poljšak,et al.  The Role of Antioxidants in Skin Cancer Prevention and Treatment , 2014, Oxidative medicine and cellular longevity.

[39]  E. Larsson,et al.  Antioxidants Accelerate Lung Cancer Progression in Mice , 2014, Science Translational Medicine.

[40]  T. Mak,et al.  Modulation of oxidative stress as an anticancer strategy , 2013, Nature Reviews Drug Discovery.

[41]  C. Morrison,et al.  A purine nucleotide biosynthesis enzyme guanosine monophosphate reductase is a suppressor of melanoma invasion. , 2013, Cell reports.

[42]  L. Cantley,et al.  Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma , 2013, Proceedings of the National Academy of Sciences.

[43]  J. Sosman,et al.  The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma , 2013, Nature Reviews Clinical Oncology.

[44]  Jie Li,et al.  PKM2 Isoform-Specific Deletion Reveals a Differential Requirement for Pyruvate Kinase in Tumor Cells , 2013, Cell.

[45]  J. Locasale Serine, glycine and one-carbon units: cancer metabolism in full circle , 2013, Nature Reviews Cancer.

[46]  M. Leach,et al.  MEK1/2 inhibition decreases lactate in BRAF-driven human cancer cells. , 2013, Cancer research.

[47]  M. V. Heiden,et al.  Pyruvate as a Pivot Point for Oncogene-Induced Senescence , 2013, Cell.

[48]  T. Shlomi,et al.  A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence , 2013, Nature.

[49]  Jun S. Song,et al.  Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. , 2013, Cancer cell.

[50]  P. Puigserver,et al.  PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. , 2013, Cancer cell.

[51]  John M. Asara,et al.  Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway , 2013, Nature.

[52]  S. Campbell,et al.  Redox regulation of Ras and Rho GTPases: mechanism and function. , 2013, Antioxidants & redox signaling.

[53]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[54]  Boris Ratnikov,et al.  Glutamine‐fueled mitochondrial metabolism is decoupled from glycolysis in melanoma , 2012, Pigment cell & melanoma research.

[55]  J. Kirkwood,et al.  Importance of glycolysis and oxidative phosphorylation in advanced melanoma , 2012, Molecular Cancer.

[56]  Abraham J. Khorasani,et al.  Loss of 5-Hydroxymethylcytosine Is an Epigenetic Hallmark of Melanoma , 2012, Cell.

[57]  Jeffrey W. Smith,et al.  Functional Specialization in Proline Biosynthesis of Melanoma , 2012, PloS one.

[58]  K. Bachman,et al.  Analysis of glutamine dependency in non-small cell lung cancer , 2012, Cancer biology & therapy.

[59]  Gerald C. Chu,et al.  Abstract A101: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. , 2012 .

[60]  Gregory Stephanopoulos,et al.  Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis , 2012, BMC Proceedings.

[61]  Wei Liu,et al.  Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC , 2012, Proceedings of the National Academy of Sciences.

[62]  Fabian V. Filipp,et al.  Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells , 2012, Pigment cell & melanoma research.

[63]  J. Rabinowitz,et al.  Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation , 2012, Proceedings of the National Academy of Sciences.

[64]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[65]  P. Ward,et al.  Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. , 2012, Cancer cell.

[66]  J. McEneny,et al.  The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress , 2012, Journal of Physiology and Biochemistry.

[67]  T. Fan,et al.  The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. , 2012, Cell metabolism.

[68]  A. Cassago,et al.  Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism , 2012, Proceedings of the National Academy of Sciences.

[69]  L. Cantley,et al.  PHGDH amplification and altered glucose metabolism in human melanoma , 2011, Pigment cell & melanoma research.

[70]  K. Brown,et al.  A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma , 2011, Nature.

[71]  Christian M. Metallo,et al.  Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia , 2011, Nature.

[72]  S. Puig,et al.  A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma , 2011, Nature.

[73]  Jeffrey W. Smith,et al.  Comparative Metabolic Flux Profiling of Melanoma Cell Lines , 2011, The Journal of Biological Chemistry.

[74]  M. V. Vander Heiden,et al.  Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. , 2011, Annual review of cell and developmental biology.

[75]  J. McEneny,et al.  The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress , 2011, Journal of Physiology and Biochemistry.

[76]  D. Fisher,et al.  Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[77]  Dean P. Jones,et al.  Clinical trials of antioxidants as cancer prevention agents: past, present, and future. , 2011, Free radical biology & medicine.

[78]  T. Copetti,et al.  Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review , 2011, Front. Pharmacol..

[79]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[80]  S. Mazurek Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. , 2011, The international journal of biochemistry & cell biology.

[81]  P. Mischel,et al.  Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations , 2011, Journal of Translational Medicine.

[82]  R. Klose,et al.  The oncometabolite 2‐hydroxyglutarate inhibits histone lysine demethylases , 2011, EMBO reports.

[83]  H. Grönberg,et al.  Dietary supplement use patterns in men with prostate cancer: the Cancer Prostate Sweden study. , 2011, Annals of oncology : official journal of the European Society for Medical Oncology.

[84]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[85]  T. Shibata,et al.  Mutant IDH1 confers an in vivo growth in a melanoma cell line with BRAF mutation. , 2011, The American journal of pathology.

[86]  Bin Wang,et al.  Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. , 2011, Cancer cell.

[87]  J. O'Brien,et al.  Mutations in GNA11 in uveal melanoma. , 2010, The New England journal of medicine.

[88]  W. Wong,et al.  Hypoxia-inducible factors and the response to hypoxic stress. , 2010, Molecular cell.

[89]  C. Thompson,et al.  Glutamine addiction: a new therapeutic target in cancer. , 2010, Trends in biochemical sciences.

[90]  Alexander Roesch,et al.  A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth , 2010, Cell.

[91]  W. Wheaton,et al.  Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity , 2010, Proceedings of the National Academy of Sciences.

[92]  A. Bosserhoff,et al.  Constitutive HIF-1 activity in malignant melanoma. , 2010, European journal of cancer.

[93]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[94]  R. Deberardinis,et al.  Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer , 2010, Oncogene.

[95]  V. Vacic,et al.  Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival , 2009, Proceedings of the National Academy of Sciences.

[96]  A. Colell,et al.  Mitochondrial glutathione, a key survival antioxidant. , 2009, Antioxidants & redox signaling.

[97]  Peng Huang,et al.  Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? , 2009, Nature Reviews Drug Discovery.

[98]  Zhon-Yin Zhang Faculty Opinions recommendation of Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. , 2009 .

[99]  Kun-Liang Guan,et al.  Glioma-Derived Mutations in IDH1 Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α , 2009, Science.

[100]  Irving L. Weissman,et al.  Association of reactive oxygen species levels and radioresistance in cancer stem cells , 2009, Nature.

[101]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[102]  J. Mackey,et al.  Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer , 2008, British Journal of Cancer.

[103]  N. Denko,et al.  Hypoxia, HIF1 and glucose metabolism in the solid tumour , 2008, Nature Reviews Cancer.

[104]  Guido Kroemer,et al.  Tumor cell metabolism: cancer's Achilles' heel. , 2008, Cancer cell.

[105]  David D. Smith,et al.  Detection of Copy Number Alterations in Metastatic Melanoma by a DNA Fluorescence In situ Hybridization Probe Panel and Array Comparative Genomic Hybridization: A Southwest Oncology Group Study (S9431) , 2008, Clinical Cancer Research.

[106]  Ralph J Deberardinis,et al.  Brick by brick: metabolism and tumor cell growth. , 2008, Current opinion in genetics & development.

[107]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[108]  B. Spiegelman,et al.  Skeletal Muscle Fiber-type Switching, Exercise Intolerance, and Myopathy in PGC-1α Muscle-specific Knock-out Animals* , 2007, Journal of Biological Chemistry.

[109]  D. Guttridge Faculty Opinions recommendation of Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. , 2007 .

[110]  R. Sachidanandam,et al.  Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells , 2007, The Journal of cell biology.

[111]  Suzanne Schubbert,et al.  Hyperactive Ras in developmental disorders and cancer , 2007, Nature Reviews Cancer.

[112]  D. Fisher,et al.  Melanocyte biology and skin pigmentation , 2007, Nature.

[113]  Jiandie D. Lin,et al.  Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators , 2006, Cell.

[114]  J. Herman,et al.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer , 2006, PLoS medicine.

[115]  M. Patel,et al.  Regulation of the pyruvate dehydrogenase complex. , 2006, Biochemical Society transactions.

[116]  Tsutomu Ohta,et al.  Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. , 2006, Molecular cell.

[117]  N. Denko,et al.  HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. , 2006, Cell metabolism.

[118]  G. Semenza,et al.  HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. , 2006, Cell metabolism.

[119]  J. Shay,et al.  BRAFE600-associated senescence-like cell cycle arrest of human naevi , 2005, Nature.

[120]  T. Golub,et al.  Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma , 2005, Nature.

[121]  G. Catignani,et al.  Antioxidants and Prevention of Chronic Disease , 2004, Critical reviews in food science and nutrition.

[122]  M. Stratton,et al.  The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website , 2004, British Journal of Cancer.

[123]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[124]  P. Puigserver,et al.  Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. , 2003, Endocrine reviews.

[125]  D. Theodorescu,et al.  Cell density mediated pericellular hypoxia leads to induction of HIF-1α via nitric oxide and Ras/MAP kinase mediated signaling pathways , 2001, Oncogene.

[126]  J. Utikal,et al.  Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases , 2001, British Journal of Cancer.

[127]  G. Semenza,et al.  V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. , 1997, Cancer research.

[128]  J. Challem Re: Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy trial. , 1997, Journal of the National Cancer Institute.

[129]  A. Giaccia,et al.  Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. , 1996, Cancer research.

[130]  B. Ebert,et al.  Hypoxic Regulation of Lactate Dehydrogenase A , 1995, The Journal of Biological Chemistry.

[131]  H. Lodish,et al.  Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. , 1987, Science.

[132]  M. Harris Pyruvate blocks expression of sensitivity to antimycin A and chloramphenicol , 1980, Somatic cell genetics.

[133]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[134]  이연수 Functional genomics reveal that the serine synthesis pathway is essential in breast cancer , 2011 .

[135]  D. Albanes,et al.  The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. , 1994, The New England journal of medicine.

[136]  S. Weinhouse On respiratory impairment in cancer cells. , 1956, Science.

[137]  Sozen,et al.  Mutations in GNA 11 in Uveal Melanoma , 2022 .