Diameter and thermal treatment dependent structure and optical properties of poly(3-hexylthiophene) nanotubes

Poly(3-hexylthiophene) (P3HT) nanotubes were prepared using anodized aluminum oxide (AAO) templates with two different diameters of ca. 240 nm and 60 nm. The structure and optical properties of the P3HT nanotubes were studied by using X-ray diffraction and UV-vis spectrometry. The results show that annealing and melt-crystallization can enhance the crystallinity and content of the well-ordered crystalline P3HT aggregates capped in the wider AAO template (240 nm). While melt-recrystallization leads to the highest crystallinity of the P3HT nanotubes, annealing leads to the formation of P3HT aggregates with the highest content of ordered structure (55.1%) and the narrowest free exciton bandwidth (w = 6.9 meV). By contrast, both annealing and melt-recrystallization do not remarkably influence the crystallinity and structural order of the P3HT nanotubes capped in the narrower AAO template (60 nm). The annealing and melt-recrystallization treatments show even a negative effect on the UV absorption properties of P3HT nanotubes. After releasing the P3HT nanotubes from the AAO, the existence of free surface results in a tremendous enhancement of crystallinity and an increase of the lateral size of crystals independent of the diameter. With respect to the optical properties, a further improvement in the optical properties of the released P3HT nanotubes with larger diameters is achieved through annealing; but annealing has a negative effect on the optical properties of the released P3HT nanotubes with smaller diameters.

[1]  T. Kowalewski,et al.  Electrospun poly(3‐hexylthiophene)/poly(ethylene oxide)/graphene oxide composite nanofibers: effects of graphene oxide reduction , 2016 .

[2]  Yaowen Li,et al.  Quantitative analysis of the size effect of room temperature nanoimprinted P3HT nanopillar arrays on the photovoltaic performance. , 2015, Nanoscale.

[3]  Virendra V. Singh,et al.  Poly(3-hexylthiophene) nanotube array surfaces with tunable wetting and contact thermal energy transport. , 2015, ACS nano.

[4]  A. Hexemer,et al.  Influence of interfacial area on exciton separation and polaron recombination in nanostructured bilayer all-polymer solar cells. , 2014, ACS nano.

[5]  E. Reichmanis,et al.  Anisotropic assembly of conjugated polymer nanocrystallites for enhanced charge transport. , 2014, ACS applied materials & interfaces.

[6]  Su‐Ting Han,et al.  Poly(3-hexylthiophene) nanotubes with tunable aspect ratios and charge transport properties. , 2014, ACS applied materials & interfaces.

[7]  Miguel Muñoz Rojo,et al.  Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials. , 2014, Nanoscale.

[8]  A. Nogales,et al.  Poly(3-hexylthiophene) nanowires in porous alumina: internal structure under confinement. , 2014, Soft matter.

[9]  Junliang Yang,et al.  Ordered Organic Nanostructures Fabricated from Anodic Alumina Oxide Templates for Organic Bulk‐Heterojunction Photovoltaics , 2014 .

[10]  Ruipeng Li,et al.  Entanglement of Conjugated Polymer Chains Influences Molecular Self‐Assembly and Carrier Transport , 2013 .

[11]  Zhijun Hu,et al.  Solvent-Assistant Room Temperature Nanoimprinting-Induced Molecular Orientation in Poly(3-hexylthiophene) Nanopillars , 2013 .

[12]  Wen‐Chang Chen,et al.  Morphology and Field-Effect Transistor Characteristics of Electrospun Nanofibers Prepared From Crystalline Poly(3-hexylthiophene) and Polyacrylate Blends , 2013 .

[13]  Woo Lee,et al.  In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide. , 2013, ACS applied materials & interfaces.

[14]  A. Nogales,et al.  The smectic-isotropic transition of P3HT determines the formation of nanowires or nanotubes into porous templates , 2013 .

[15]  R. Hayakawa,et al.  Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[16]  Qiang Gao,et al.  Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[17]  T. Russell,et al.  P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. , 2012, ACS nano.

[18]  Sarah T. Turner,et al.  Quantitative Analysis of Bulk Heterojunction Films Using Linear Absorption Spectroscopy and Solar Cell Performance , 2011 .

[19]  Youngsu Kim,et al.  Ultrahigh Density Array of Free-Standing Poly(3-hexylthiophene) Nanotubes on Conducting Substrates via Solution Wetting , 2011 .

[20]  Paul M. DiCarmine,et al.  Solvent/Electrolyte Control of the Wall Thickness of Template-Synthesized Nanostructures , 2011 .

[21]  M. Choi,et al.  Simple fabrication of asymmetric high-aspect-ratio polymer nanopillars by reusable AAO templates. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[22]  J. K. Kim,et al.  Highly Ordered Nanoporous Alumina on Conducting Substrates with Adhesion Enhanced by Surface Modification: Universal Templates for Ultrahigh‐Density Arrays of Nanorods , 2010, Advanced materials.

[23]  Qing Liao,et al.  Construction and optoelectronic properties of organic one-dimensional nanostructures. , 2010, Accounts of chemical research.

[24]  Dong Yun Lee,et al.  Poly(3‐hexylthiophene) Nanorods with Aligned Chain Orientation for Organic Photovoltaics , 2010 .

[25]  U. Pietsch,et al.  Bimodal Temperature Behavior of Structure and Mobility in High Molecular Weight P3HT Thin Films , 2009 .

[26]  Dan Li,et al.  One‐Dimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications , 2009 .

[27]  D. O’Carroll,et al.  Luminescent Conjugated Polymer Nanowire Y‐Junctions with On‐Branch Molecular Anisotropy , 2009 .

[28]  K. Musselman,et al.  Low‐Temperature Synthesis of Large‐Area, Free‐Standing Nanorod Arrays on ITO/Glass and other Conducting Substrates , 2008 .

[29]  E. O'Connor,et al.  Poly(9,9‐dioctylfluorene) Nanowires with Pronounced β‐Phase Morphology: Synthesis, Characterization, and Optical Properties , 2008 .

[30]  Zhenan Bao,et al.  Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents , 2007 .

[31]  Do Hwan Kim,et al.  Layered molecular ordering of self-organized poly(3-hexylthiophene) thin films on hydrophobized surfaces , 2006 .

[32]  F. Spano Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances, interband coupling and disorder , 2006 .

[33]  F. Spano,et al.  Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. , 2005, The Journal of chemical physics.

[34]  Zhenan Bao,et al.  Effect of Mesoscale Crystalline Structure on the Field‐Effect Mobility of Regioregular Poly(3‐hexyl thiophene) in Thin‐Film Transistors , 2005 .

[35]  C. Mu,et al.  Uniform Metal Nanotube Arrays by Multistep Template Replication and Electrodeposition , 2004 .

[36]  Jeong In Han,et al.  Enhancement of Field‐Effect Mobility Due to Surface‐Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors , 2005 .

[37]  K. Yoshino,et al.  Laser action in polydialkylfluorene films: Influence of low-temperature thermal treatment , 1999 .

[38]  Haimu Ye,et al.  Improve the thermal and mechanical properties of poly(L-lactide) by forming nanocomposites with pristine vermiculite , 2015, Chinese Journal of Polymer Science.