Fuzzy Bi-cooperative games in multilinear extension form

In this paper, we introduce the notion of a fuzzy Bi-cooperative game in multilinear extension form. An LG value as a possible solution concept is obtained using standard fuzzy game theoretic axioms.

[1]  G. Owen Multilinear Extensions of Games , 1972 .

[2]  J. M. Bilbao,et al.  Cooperative Games on Combinatorial Structures , 2000 .

[3]  Qiang Zhang,et al.  The Shapley value for fuzzy bi-cooperative games , 2007 .

[4]  R. Mesiara,et al.  Discrete Choquet integral and some of its symmetric extensions , 2011 .

[5]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[6]  Qiang Zhang,et al.  The Shapley function for fuzzy cooperative games with multilinear extension form , 2010, Appl. Math. Lett..

[7]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .

[8]  Christophe Labreuche,et al.  Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..

[9]  Christophe Labreuche,et al.  Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..

[10]  Christophe Labreuche,et al.  Bi-capacities -- Part I: definition, Möbius transform and interaction , 2007, ArXiv.

[11]  Surajit Borkotokey,et al.  Bi-cooperative games with fuzzy bi-coalitions , 2012, Fuzzy Sets Syst..

[12]  Christophe Labreuche,et al.  Bi-capacities -- Part II: the Choquet integral , 2007, ArXiv.

[13]  Christophe Labreuche,et al.  A value for bi-cooperative games , 2008, Int. J. Game Theory.

[14]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[15]  T. E. S. Raghavan,et al.  Shapley Value for Multichoice Cooperative Games, I , 1993 .

[16]  Dan S. Felsenthal,et al.  Ternary voting games , 1997, Int. J. Game Theory.

[17]  Jesús Mario Bilbao,et al.  The Shapley value for bicooperative games , 2008, Ann. Oper. Res..