Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase.

RumA catalyzes transfer of a methyl group from S-adenosylmethionine (SAM) specifically to uridine 1939 of 23S ribosomal RNA in Escherichia coli to yield 5-methyluridine. We determined the crystal structure of RumA at 1.95 A resolution. The protein is organized into three structural domains: The N-terminal domain contains sequence homology to the conserved TRAM motif and displays a five-stranded beta barrel architecture characteristic of an oligosaccharide/oligonucleotide binding fold. The central domain contains a [Fe(4)S(4)] cluster coordinated by four conserved cysteine residues. The C-terminal domain displays the typical SAM-dependent methyltransferase fold. The catalytic nucleophile Cys389 lies in a motif different from that in DNA 5-methylcytosine methyltransferases. The electrostatic potential surface reveals a predominately positively charged area that covers the concave surface of the first two domains and suggests an RNA binding mode. The iron-sulfur cluster may be involved in the correct folding of the protein or may have a role in RNA binding.

[1]  R. Klausner,et al.  Iron-sulfur clusters as biosensors of oxidants and iron. , 1996, Trends in biochemical sciences.

[2]  E. Fauman Structure and evolution of AdoMet-dependent methyltransferase. , 1999 .

[3]  R. Stroud,et al.  The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. , 2003, Structure.

[4]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[5]  H. Beinert,et al.  Iron-sulfur clusters: nature's modular, multipurpose structures. , 1997, Science.

[6]  J. L. Smith,et al.  Structure of the allosteric regulatory enzyme of purine biosynthesis. , 1994, Science.

[7]  D. Santi,et al.  Enzymatic mechanism of tRNA (m5U54)methyltransferase. , 1994, Biochimie.

[8]  R J Roberts,et al.  Predictive motifs derived from cytosine methyltransferases. , 1989, Nucleic acids research.

[9]  W. Saenger,et al.  Universal catalytic domain structure of AdoMet-dependent methyltransferases. , 1995, Journal of molecular biology.

[10]  E. Koonin,et al.  TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. , 2001, FEMS Microbiology Letters.

[11]  A. Murzin OB(oligonucleotide/oligosaccharide binding)‐fold: common structural and functional solution for non‐homologous sequences. , 1993, The EMBO journal.

[12]  J. Tainer,et al.  Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. , 1995, The EMBO journal.

[13]  D. Santi,et al.  Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. , 1999, Nucleic acids research.

[14]  R. Blumenthal,et al.  Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. , 1995, Journal of molecular biology.

[15]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[16]  D. Santi,et al.  Identification of the catalytic nucleophile of tRNA (m5U54)methyltransferase. , 1991, Biochemistry.

[17]  H. Sticht,et al.  The structure of iron-sulfur proteins. , 1998, Progress in biophysics and molecular biology.

[18]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[19]  D. Suck Common fold, common function, common origin? , 1997, Nature Structural Biology.

[20]  P. Limbach,et al.  Summary: the modified nucleosides of RNA. , 1994, Nucleic acids research.

[21]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[22]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[23]  D. Santi,et al.  Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. , 1996, Nucleic acids research.

[24]  G. N. Ramachandran,et al.  Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. , 1965, Biophysical journal.

[25]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[26]  Jef Rozenski,et al.  The RNA Modification Database: 1999 update , 1999, Nucleic Acids Res..

[27]  K. Miki,et al.  Ultrahigh-resolution structure of high-potential iron-sulfur protein from Thermochromatium tepidum. , 2002, Acta crystallographica. Section D, Biological crystallography.

[28]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[29]  E A Merritt,et al.  Expanding the model: anisotropic displacement parameters in protein structure refinement. , 1999, Acta crystallographica. Section D, Biological crystallography.

[30]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[31]  W. Lipscomb,et al.  The crystal structure of Haelll methyltransferase covalently complexed to DNA: An extrahelical cytosine and rearranged base pairing , 1995, Cell.

[32]  R. Stroud,et al.  Characterization of the 23 S Ribosomal RNA m5U1939 Methyltransferase from Escherichia coli * , 2002, The Journal of Biological Chemistry.

[33]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[34]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[35]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[36]  C. Ramakrishnan,et al.  Stereochemical criteria for polypeptide and protein chain conformations , 1964 .

[37]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[38]  Wayne A. Decatur,et al.  rRNA modifications and ribosome function. , 2002, Trends in biochemical sciences.

[39]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[40]  J. Christopher Fromme,et al.  Structure of a trapped endonuclease III–DNA covalent intermediate , 2003, The EMBO journal.

[41]  James A. McCloskey,et al.  The RNA modification database , 1997, Nucleic Acids Res..

[42]  J. Ofengand,et al.  Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. , 2001, RNA.

[43]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[44]  D. Santi,et al.  m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  G. Björk,et al.  Enzymatic Modification of tRNAs , 2002, The Journal of Biological Chemistry.

[46]  Eugene V Koonin,et al.  Comparative genomics and evolution of proteins involved in RNA metabolism. , 2002, Nucleic acids research.