Enhanced CO2 conversion by frosted dielectric surface with ZrO2 coating in a dielectric barrier discharge reactor

[1]  K. Birke,et al.  Towards High Efficiency CO2 Utilization by Glow Discharge Plasma , 2021, Processes.

[2]  Ruiyang Xu,et al.  Enhanced conversion of CO2 into O2-free fuel gas via the Boudouard reaction with biochar in an atmospheric plasmatron , 2021 .

[3]  M. Rahimpour,et al.  Polyurethane foam: A novel support for metal oxide packing used in the non-thermal plasma decomposition of CO2 , 2021 .

[4]  Shashidhar Thatikonda,et al.  Ni and Cu oxide supported γ-Al2O3 packed DBD plasma reactor for CO2 activation , 2021 .

[5]  Chunfei Wu,et al.  A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization , 2021 .

[6]  B. Zhang,et al.  Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2 , 2020, Frontiers of Chemical Science and Engineering.

[7]  K. Birke,et al.  High efficiency CO2-splitting in atmospheric pressure glow discharge , 2020 .

[8]  Zhenhua Li,et al.  Synergistic effect of catalyst and plasma on CO2 decomposition in a dielectric barrier discharge plasma reactor , 2020 .

[9]  C. Batiot-Dupeyrat,et al.  Efficient plasma-catalysis coupling for CH4 and CO2 transformation in a fluidized bed reactor: Comparison with a fixed bed reactor , 2020 .

[10]  R. Snyders,et al.  Insights into CO2 conversion in pulsed microwave plasma using optical spectroscopy , 2020 .

[11]  M. Rahimpour,et al.  Low-Temperature CO2 Splitting in a Noncatalytic Dielectric-Barrier Discharge Plasma: Effect of Operational Parameters with a New Strategy of Experimentation , 2020 .

[12]  T. Nozaki,et al.  The 2020 plasma catalysis roadmap , 2020, Journal of Physics D: Applied Physics.

[13]  A. Bogaerts,et al.  Plasma-Based CO2 Conversion: To Quench or Not to Quench? , 2020, The Journal of Physical Chemistry C.

[14]  S. Kawi,et al.  A review of recent catalyst advances in CO2 methanation processes , 2020 .

[15]  Baowei Wang,et al.  Influence of Electrode Interval and Barrier Thickness in the Segmented Electrode Micro-plasma DBD Reactor on CO2 Decomposition , 2020, Plasma Chemistry and Plasma Processing.

[16]  Soonho Song,et al.  Carbon dioxide conversion in an atmospheric pressure microwave plasma reactor: Improving efficiencies by enhancing afterglow quenching , 2020 .

[17]  C. Subrahmanyam,et al.  A facile method to decompose CO2 using a g-C3N4-assisted DBD plasma reactor. , 2020, Environmental research.

[18]  Jingguang G. Chen,et al.  Review of Plasma-Assisted Catalysis for Selective Generation of Oxygenates from CO2 and CH4 , 2020 .

[19]  Shen Zhang,et al.  Numerical Investigation on the Effects of Dielectric Barrier on a Nanosecond Pulsed Surface Dielectric Barrier Discharge , 2019, Molecules.

[20]  X. Tu,et al.  Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al2O3 Catalyst at Near-Room Temperature: Insights into the Importance of the Catalyst Surface on the Reaction Mechanism , 2019, ACS catalysis.

[21]  A. Bogaerts,et al.  Improving the Energy Efficiency of CO2 Conversion in Nonequilibrium Plasmas through Pulsing , 2019, The Journal of Physical Chemistry C.

[22]  Y. Duan,et al.  Investigation of CO2 Splitting Process Under Atmospheric Pressure Using Multi-electrode Cylindrical DBD Plasma Reactor , 2019, Plasma Chemistry and Plasma Processing.

[23]  Feng Yu,et al.  Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device , 2019, Plasma Science and Technology.

[24]  Jie Li,et al.  Dielectric barrier discharge plasma assisted CO2 conversion: understanding the effects of reactor design and operating parameters , 2019, Journal of Physics D: Applied Physics.

[25]  Xin Tu,et al.  Warm plasma activation of CO2 in a rotating gliding arc discharge reactor , 2018, Journal of CO2 Utilization.

[26]  Y. Uytdenhouwen,et al.  A packed-bed DBD micro plasma reactor for CO2 dissociation: Does size matter? , 2018, Chemical Engineering Journal.

[27]  B. Likozar,et al.  A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels , 2018, RSC advances.

[28]  A. Bogaerts,et al.  Enhancement of plasma generation in catalyst pores with different shapes , 2018 .

[29]  E. Neyts,et al.  Catalyst Preparation with Plasmas: How Does It Work? , 2018 .

[30]  Edward S. Rubin,et al.  On the climate change mitigation potential of CO2 conversion to fuels , 2017 .

[31]  X. Tu,et al.  Atmospheric Pressure Non-Thermal Plasma Activation of CO2 in a Packed-Bed Dielectric Barrier Discharge Reactor. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Philip A. Martin,et al.  CO2 conversion in a non-thermal, barium titanate packed bed plasma reactor: The effect of dilution by Ar and N2 , 2017 .

[33]  Y. Uytdenhouwen,et al.  CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis , 2017 .

[34]  Ramses Snoeckx,et al.  Plasma technology - a novel solution for CO2 conversion? , 2017, Chemical Society reviews.

[35]  Tao Yang,et al.  Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma , 2017 .

[36]  X. Tu,et al.  Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design , 2017 .

[37]  F. Reniers,et al.  Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge , 2017 .

[38]  X. Tu,et al.  CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling , 2017 .

[39]  R. Snyders,et al.  DBD in burst mode: solution for more efficient CO2 conversion? , 2016, 1609.04934.

[40]  H. Uhm,et al.  Carbon dioxide elimination and regeneration of resources in a microwave plasma torch. , 2016, Environmental pollution.

[41]  Van de Sanden,et al.  Fluid modelling of CO2 dissociation in a dielectric barrier discharge , 2016 .

[42]  R. Snyders,et al.  The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2 , 2016, 1604.08755.

[43]  A. Bogaerts,et al.  Fluid modelling of a packed bed dielectric barrier discharge plasma reactor , 2016 .

[44]  A. Bogaerts,et al.  Effect of Argon or Helium on the CO2 Conversion in a Dielectric Barrier Discharge , 2015 .

[45]  Ya-Ling He,et al.  Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials , 2014 .

[46]  Annemie Bogaerts,et al.  Understanding plasma catalysis through modelling and simulation—a review , 2014 .

[47]  Xiaoming Zheng,et al.  Characteristics of the Decomposition of CO2 in a Dielectric Packed-Bed Plasma Reactor , 2012, Plasma Chemistry and Plasma Processing.

[48]  Xin Tu,et al.  Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor , 2011 .

[49]  Jorge S. Benítez-Read,et al.  Analysis and electrical modelling of a cylindrical DBD configuration at different operating frequencies , 2006 .

[50]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[51]  Shuhai Liu,et al.  Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage , 2003 .

[52]  Gen-hui Xu,et al.  Non-thermal plasma approaches in CO2 utilization , 1999 .

[53]  T. Takuma,et al.  Field behaviour at a triple junction in composite dielectric arrangements , 1991 .