Near-earth asteroid (66391) Moshup (1999 KW4) observing campaign: Results from a global planetary defense characterization exercise

[1]  P. Michel,et al.  Creep stability of the DART/Hera mission target 65803 Didymos: II. The role of cohesion , 2021, Icarus.

[2]  V. Reddy,et al.  A New Method for Deriving Composition of S-type Asteroids from Noisy and Incomplete Near-infrared Spectra , 2020, The Astronomical Journal.

[3]  Michael J. Aftosmis,et al.  Interactions between asteroid fragments during atmospheric entry , 2020 .

[4]  Tucson,et al.  A satellite orbit drift in binary near-Earth asteroids (66391) 1999 KW4 and (88710) 2001 SL9 — Indication of the BYORP effect , 2019, 1912.06456.

[5]  E. Christensen,et al.  Visible Spectroscopy from the Mission Accessible Near-Earth Object Survey (MANOS): Taxonomic Dependence on Asteroid Size , 2019, The Astronomical Journal.

[6]  Haris Khan Niazi,et al.  Near-Earth asteroid 2012 TC4 observing campaign: Results from a global planetary defense exercise , 2019, Icarus.

[7]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[8]  P. J. Register,et al.  A fragment-cloud model for asteroid breakup and atmospheric energy deposition , 2017 .

[9]  J. Dotson,et al.  A probabilistic asteroid impact risk model: assessment of sub-300 m impacts , 2017 .

[10]  P. Atkinson,et al.  Asteroid impact effects and their immediate hazards for human populations , 2017, 1703.07592.

[11]  A. Rivkin,et al.  The Hydrated Mineralogies of the Largest Asteroids , 2017 .

[12]  E. Nielsen,et al.  EXTREME AO OBSERVATIONS OF TWO TRIPLE ASTEROID SYSTEMS WITH SPHERE , 2016, 1603.04435.

[13]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[14]  Francesca DeMeo,et al.  The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys , 2013, 1307.2424.

[15]  Paul Mann,et al.  Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification , 2012, 1205.0248.

[16]  J. Borovička,et al.  Very low strengths of interplanetary meteoroids and small asteroids , 2011 .

[17]  E. L. Wright,et al.  NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS , 2011, 1109.6400.

[18]  T. B. Spahr,et al.  ExploreNEOs. V. AVERAGE ALBEDO BY TAXONOMIC COMPLEX IN THE NEAR-EARTH ASTEROID POPULATION , 2011 .

[19]  Junichiro Kawaguchi,et al.  Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites , 2011, Science.

[20]  J. Enriquez,et al.  The origin of (90) Antiope from component-resolved near-infrared spectroscopy☆ , 2011, 1102.3458.

[21]  F. Marchis,et al.  A spectral comparison of (379) Huenna and its satellite , 2011, 1102.1623.

[22]  Lori M. Feaga,et al.  Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft , 2009, Science.

[23]  M. D. Dyar,et al.  Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 , 2009, Science.

[24]  S. Kaspi,et al.  Simultaneous spectroscopic and photometric observations of binary asteroids , 2009, 0909.0512.

[25]  Roger N. Clark,et al.  Detection of Adsorbed Water and Hydroxyl on the Moon , 2009, Science.

[26]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[27]  M. Shepard,et al.  Near-Earth asteroid surface roughness depends on compositional class , 2008 .

[28]  V. De Caprio,et al.  SPHERE IFS: the spectro differential imager of the VLT for exoplanets search , 2008, Astronomical Telescopes + Instrumentation.

[29]  Imke de Pater,et al.  Tvashtar awakening detected in April 2006 with OSIRIS at the W.M. Keck Observatory , 2007 .

[30]  Daniel J. Scheeres,et al.  Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[31]  R. Roy,et al.  Photometric Survey of Binary Near-Earth Asteroids , 2006 .

[32]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[33]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[34]  Daniel J. Scheeres,et al.  Radar observations of asteroid 25143 Itokawa (1998 SF36) , 2004 .

[35]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[36]  L. Benner,et al.  Radar constraints on asteroid regolith properties using 433 Eros as ground truth , 2001 .

[37]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[38]  Alan W. Harris,et al.  On the Revision of Radiometric Albedos and Diameters of Asteroids , 1997 .

[39]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[40]  Steven J. Ostro,et al.  Planetary radar astronomy , 1983 .

[41]  Irwin I. Shapiro,et al.  Planetary radar astronomy , 1968, IEEE Spectrum.

[42]  P. Michel,et al.  The Double Asteroid Redirection Test (DART): Planetary Defense Investigations and Requirements , 2021, The Planetary Science Journal.

[43]  S. Ostro,et al.  A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2003 , 2007 .

[44]  Jon D. Giorgini,et al.  The role of radar in predicting and preventing asteroid and comet collisions with Earth , 2004 .

[45]  Steven J. Ostro,et al.  Asteroid 4179 Toutatis: 1996 Radar Observations , 1999 .