Numerical evaluation of virtual corrections to multi-jet production in massless QCD

We present a C++ library for the numerical evaluation of one-loop virtual corrections to multi-jet production in massless QCD. The pure gluon primitive amplitudes are evaluated using NGluon (Badger et al., (2011) [62]). A generalized unitarity reduction algorithm is used to construct arbitrary multiplicity fermion–gluon primitive amplitudes. From these basic building blocks the one-loop contribution to the squared matrix element, summed over colour and helicities, is calculated. No approximation in colour is performed. While the primitive amplitudes are given for arbitrary multiplicities, we provide the squared matrix elements only for up to 7 external partons allowing the evaluation of the five jet cross section at next-to-leading order accuracy. The library has been recently successfully applied to four jet production at next-to-leading order in QCD (Badger et al., 2012 [92]).

[1]  H. Deurzen,et al.  NLO QCD corrections to the production of Higgs plus two jets at the LHC , 2012, 1301.0493.

[2]  M. Worek,et al.  Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD , 2012, 1206.3064.

[3]  Review of particle properties. Particle Data Group , 1978 .

[4]  Tom Melia,et al.  Next-to-leading order QCD predictions for W+W+jj production at the LHC , 2010, 1007.5313.

[5]  Z. Kunszt,et al.  A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.

[6]  A. Denner,et al.  NLO QCD corrections to $$ {\text{t}}\overline {\text{t}} {\text{b}}\overline {\text{b}} $$ production at the LHC: 2. Full hadronic results , 2010, 1001.4006.

[7]  G. Bevilacqua,et al.  Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order , 2010, 1012.4230.

[8]  D. Maitre,et al.  An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.

[9]  Rikkert Frederix,et al.  W and Z/γ∗ boson production in association with a bottom-antibottom pair , 2011, 1106.6019.

[10]  M. Huber,et al.  A proposal for a standard interface between Monte Carlo tools and one-loop programs , 2010, Comput. Phys. Commun..

[11]  S. Weinzierl,et al.  Next-to-leading-order results for five, six, and seven jets in electron-positron annihilation. , 2011, Physical review letters.

[12]  Z. Trocsanyi,et al.  Standard Model Higgs boson production in association with a top anti-top pair at NLO with parton showering , 2011, 1108.0387.

[13]  A. Denner,et al.  NLO QCD corrections to ttbproduction at the LHC: 2. Full hadronic results , 2010 .

[14]  J. Guillet,et al.  Next-to-leading order QCD corrections to pp ! bbbb + X at the LHC: the quark induced case , 2009, 0910.4379.

[15]  C. Englert,et al.  Precise predictions for W +jet production at hadron colliders , 2011, 1106.4009.

[16]  L. Dixon Calculating scattering amplitudes efficiently , 1996, hep-ph/9601359.

[17]  J. Campbell,et al.  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline t {W^{\pm }} $$\end{document} production and decay at NLO , 2012, Journal of High Energy Physics.

[18]  A. Denner,et al.  Next-to-leading order QCD corrections to pp-->ttbb+X at the LHC. , 2009, Physical review letters.

[19]  F Cascioli,et al.  Scattering amplitudes with open loops. , 2011, Physical review letters.

[20]  J. Campbell,et al.  Gluon-gluon contributions to W+W− production and Higgs interference effects , 2011, 1107.5569.

[21]  C. Berger,et al.  Multiparton Scattering Amplitudes via On-Shell Methods , 2009, 0912.3534.

[22]  G. Zanderighi,et al.  On the numerical evaluation of one-loop amplitudes: the gluonic case , 2008, 0805.2152.

[23]  Z. Trocsanyi,et al.  Z0-boson production in association with a tt pair at next-to-leading order accuracy with parton shower effects , 2011, 1111.1444.

[24]  J. Campbell,et al.  QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations , 2010, 1011.6647.

[25]  D. Forde Direct extraction of one-loop integral coefficients , 2007, 0704.1835.

[26]  D Maître,et al.  Four-jet production at the Large Hadron Collider at next-to-leading order in QCD. , 2011, Physical review letters.

[27]  Peter Uwer,et al.  Hadronic top-quark pair-production with one jet and parton showering , 2011, 1110.5251.

[28]  J. Sexton,et al.  QCD radiative corrections to parton-parton scattering , 1986 .

[29]  Rikkert Frederix,et al.  Automation of one-loop QCD computations , 2011, 1103.0621.

[30]  Z. Trocsanyi,et al.  Top quark pair production in association with a jet at NLO accuracy with parton showering , 2011, 1101.2672.

[31]  D Maître,et al.  Precise predictions for w+3 jet production at hadron colliders. , 2009, Physical review letters.

[32]  Z. Kunszt,et al.  Efficient color-dressed calculation of virtual corrections , 2009, 0911.1962.

[33]  Frank Siegert,et al.  W+n-Jet Predictions With MC@NLO in Sherpa , 2012 .

[34]  N. Greiner,et al.  NLO QCD corrections to the production of W+ W- plus two jets at the LHC , 2012, 1202.6004.

[35]  D Maître,et al.  Precise predictions for W+4-jet production at the large hadron collider. , 2010, Physical review letters.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  S. Badger,et al.  One-Loop Helicity Amplitudes for tt Production at Hadron Colliders , 2011, 1101.5947.

[38]  Z. Bern,et al.  The Computation of loop amplitudes in gauge theories , 1992 .

[39]  W. Giele,et al.  Recursive calculations for processes with n gluons , 1988 .

[40]  Z. Kunszt,et al.  Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.

[41]  L. Dixon,et al.  The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.

[42]  G. Bevilacqua,et al.  Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp --> tt + 2 jets at next-to-leading order. , 2010, Physical review letters.

[43]  S. Badger Direct extraction of one loop rational terms , 2008, 0806.4600.

[44]  S. Frixione,et al.  Matching NLO QCD computations and parton shower simulations , 2002, hep-ph/0204244.

[45]  Giulia Zanderighi,et al.  Preprint typeset in JHEP style- HYPER VERSION Fermilab-PUB-08-436-T , 2022 .

[46]  Peter Uwer,et al.  NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of s=8 TeV , 2012, 1209.0098.

[47]  A. Denner,et al.  NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders , 2012, Journal of High Energy Physics.

[48]  M. Schonherr,et al.  Uncertainties in next-to-leading order plus parton shower matched simulations of inclusive jet and dijet production , 2012, 1208.2815.

[49]  A. Guffanti,et al.  Next-to-leading order QCD corrections to the production of two bottom-antibottom pairs at the LHC. , 2011, Physical review letters.

[50]  R. M. BULL,et al.  Particle Kinematics , 1973, Nature.

[51]  S. Hoeche,et al.  Precise Predictions of Z+n jets at Hadron Colliders , 2013 .

[52]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[53]  R. Keith Ellis,et al.  Top-Quark Processes at NLO in Production and Decay , 2012, 1204.1513.

[54]  L. Dixon,et al.  Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.

[55]  H. Ita,et al.  Colour decompositions of multi-quark one-loop QCD amplitudes , 2011, 1111.4193.

[56]  N. Greiner,et al.  Automated one-loop calculations with GoSam , 2011, 1111.2034.

[57]  L. Dixon,et al.  Precise predictions for Z -boson + 4 jet production at hadron colliders , 2011, 1108.2229.

[58]  G. Zanderighi,et al.  Scalar one-loop integrals for QCD , 2007, 0712.1851.

[59]  One-loop corrections to two-quark three-gluon amplitudes☆☆☆ , 1994, hep-ph/9409393.

[60]  Simone Alioli,et al.  Jet pair production in POWHEG , 2010, 1012.3380.

[61]  P. Nason,et al.  Matching NLO QCD computations with Parton Shower simulations: the POWHEG method , 2007, 0709.2092.

[62]  G. Zanderighi,et al.  W+3 jet production at the LHC as a signal or background , 2009, 0910.3671.

[63]  G. Bevilacqua,et al.  Hadronic top-quark pair production in association with two jets at Next-to-Leading Order QCD , 2011, 1108.2851.

[64]  J. Campbell,et al.  Hadronic production of a Higgs boson and two jets at next-to-leading order , 2010, 1001.4495.

[65]  G. Zanderighi,et al.  W+3 jet production at the Tevatron , 2009, 0906.1445.

[66]  R. Pittau,et al.  Assault on the NLO wishlist: pp→tt̄bb̄ , 2009, 0907.4723.

[67]  T. Gleisberg,et al.  Next-to-Leading Order QCD Predictions for W+3-Jet Distributions at Hadron Colliders , 2009, 0907.1984.

[68]  R. Pittau,et al.  Scalar and pseudoscalar Higgs production in association with a top–antitop pair , 2011, 1104.5613.

[69]  R. L. Crawford,et al.  Review of Particle Properties, 1988-1989 , 1988 .

[70]  Tom Melia,et al.  NLO QCD corrections for W^+W^- pair production in association with two jets at hadron colliders , 2011, 1104.2327.

[71]  L. Dixon,et al.  One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.

[72]  Peter Uwer,et al.  NGluon: A package to calculate one-loop multi-gluon amplitudes , 2010, Comput. Phys. Commun..

[73]  Rikkert Frederix,et al.  NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM , 2012, 1202.5475.

[74]  G. Zanderighi,et al.  One-loop calculations in quantum field theory: From Feynman diagrams to unitarity cuts , 2011, 1105.4319.

[75]  Giovanni Ossola,et al.  Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.

[76]  Costas G. Papadopoulos,et al.  CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.

[77]  A. Kardos,et al.  Top quark pair production in association with a Z-boson at NLO accuracy , 2011, 1111.0610.

[78]  E. Re,et al.  A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.

[79]  T. Gleisberg,et al.  Next-to-leading order QCD predictions for Z,gamma^*+3-Jet distributions at the tevatron. , 2010, 1004.1659.

[80]  Giulia Zanderighi,et al.  NLO QCD corrections to five-jet production at LEP and the extraction of αs(MZ) , 2010, 1008.5313.

[81]  G. J. van Oldenborgh,et al.  FF — a package to evaluate one-loop Feynman diagrams , 1991 .

[82]  Stefan Weinzierl,et al.  Efficiency improvements for the numerical computation of NLO corrections , 2012, 1205.2096.

[83]  P. Mastrolia,et al.  Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level , 2010, 1006.0710.

[84]  Andreas van Hameren,et al.  OneLOop: For the evaluation of one-loop scalar functions , 2010, Comput. Phys. Commun..

[85]  Giulia Zanderighi,et al.  Generalized unitarity at work: First NLO QCD results for hadronic W+3 jet production , 2009, 0901.4101.