Numerical evaluation of virtual corrections to multi-jet production in massless QCD
暂无分享,去创建一个
Peter Uwer | Simon Badger | Benedikt Biedermann | Valery Yundin | P. Uwer | S. Badger | B. Biedermann | V. Yundin
[1] H. Deurzen,et al. NLO QCD corrections to the production of Higgs plus two jets at the LHC , 2012, 1301.0493.
[2] M. Worek,et al. Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD , 2012, 1206.3064.
[3] Review of particle properties. Particle Data Group , 1978 .
[4] Tom Melia,et al. Next-to-leading order QCD predictions for W+W+jj production at the LHC , 2010, 1007.5313.
[5] Z. Kunszt,et al. A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.
[6] A. Denner,et al. NLO QCD corrections to $$ {\text{t}}\overline {\text{t}} {\text{b}}\overline {\text{b}} $$ production at the LHC: 2. Full hadronic results , 2010, 1001.4006.
[7] G. Bevilacqua,et al. Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order , 2010, 1012.4230.
[8] D. Maitre,et al. An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.
[9] Rikkert Frederix,et al. W and Z/γ∗ boson production in association with a bottom-antibottom pair , 2011, 1106.6019.
[10] M. Huber,et al. A proposal for a standard interface between Monte Carlo tools and one-loop programs , 2010, Comput. Phys. Commun..
[11] S. Weinzierl,et al. Next-to-leading-order results for five, six, and seven jets in electron-positron annihilation. , 2011, Physical review letters.
[12] Z. Trocsanyi,et al. Standard Model Higgs boson production in association with a top anti-top pair at NLO with parton showering , 2011, 1108.0387.
[13] A. Denner,et al. NLO QCD corrections to ttbproduction at the LHC: 2. Full hadronic results , 2010 .
[14] J. Guillet,et al. Next-to-leading order QCD corrections to pp ! bbbb + X at the LHC: the quark induced case , 2009, 0910.4379.
[15] C. Englert,et al. Precise predictions for W +jet production at hadron colliders , 2011, 1106.4009.
[16] L. Dixon. Calculating scattering amplitudes efficiently , 1996, hep-ph/9601359.
[17] J. Campbell,et al. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline t {W^{\pm }} $$\end{document} production and decay at NLO , 2012, Journal of High Energy Physics.
[18] A. Denner,et al. Next-to-leading order QCD corrections to pp-->ttbb+X at the LHC. , 2009, Physical review letters.
[19] F Cascioli,et al. Scattering amplitudes with open loops. , 2011, Physical review letters.
[20] J. Campbell,et al. Gluon-gluon contributions to W+W− production and Higgs interference effects , 2011, 1107.5569.
[21] C. Berger,et al. Multiparton Scattering Amplitudes via On-Shell Methods , 2009, 0912.3534.
[22] G. Zanderighi,et al. On the numerical evaluation of one-loop amplitudes: the gluonic case , 2008, 0805.2152.
[23] Z. Trocsanyi,et al. Z0-boson production in association with a tt pair at next-to-leading order accuracy with parton shower effects , 2011, 1111.1444.
[24] J. Campbell,et al. QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations , 2010, 1011.6647.
[25] D. Forde. Direct extraction of one-loop integral coefficients , 2007, 0704.1835.
[26] D Maître,et al. Four-jet production at the Large Hadron Collider at next-to-leading order in QCD. , 2011, Physical review letters.
[27] Peter Uwer,et al. Hadronic top-quark pair-production with one jet and parton showering , 2011, 1110.5251.
[28] J. Sexton,et al. QCD radiative corrections to parton-parton scattering , 1986 .
[29] Rikkert Frederix,et al. Automation of one-loop QCD computations , 2011, 1103.0621.
[30] Z. Trocsanyi,et al. Top quark pair production in association with a jet at NLO accuracy with parton showering , 2011, 1101.2672.
[31] D Maître,et al. Precise predictions for w+3 jet production at hadron colliders. , 2009, Physical review letters.
[32] Z. Kunszt,et al. Efficient color-dressed calculation of virtual corrections , 2009, 0911.1962.
[33] Frank Siegert,et al. W+n-Jet Predictions With MC@NLO in Sherpa , 2012 .
[34] N. Greiner,et al. NLO QCD corrections to the production of W+ W- plus two jets at the LHC , 2012, 1202.6004.
[35] D Maître,et al. Precise predictions for W+4-jet production at the large hadron collider. , 2010, Physical review letters.
[36] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[37] S. Badger,et al. One-Loop Helicity Amplitudes for tt Production at Hadron Colliders , 2011, 1101.5947.
[38] Z. Bern,et al. The Computation of loop amplitudes in gauge theories , 1992 .
[39] W. Giele,et al. Recursive calculations for processes with n gluons , 1988 .
[40] Z. Kunszt,et al. Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.
[41] L. Dixon,et al. The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.
[42] G. Bevilacqua,et al. Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp --> tt + 2 jets at next-to-leading order. , 2010, Physical review letters.
[43] S. Badger. Direct extraction of one loop rational terms , 2008, 0806.4600.
[44] S. Frixione,et al. Matching NLO QCD computations and parton shower simulations , 2002, hep-ph/0204244.
[45] Giulia Zanderighi,et al. Preprint typeset in JHEP style- HYPER VERSION Fermilab-PUB-08-436-T , 2022 .
[46] Peter Uwer,et al. NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of s=8 TeV , 2012, 1209.0098.
[47] A. Denner,et al. NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders , 2012, Journal of High Energy Physics.
[48] M. Schonherr,et al. Uncertainties in next-to-leading order plus parton shower matched simulations of inclusive jet and dijet production , 2012, 1208.2815.
[49] A. Guffanti,et al. Next-to-leading order QCD corrections to the production of two bottom-antibottom pairs at the LHC. , 2011, Physical review letters.
[50] R. M. BULL,et al. Particle Kinematics , 1973, Nature.
[51] S. Hoeche,et al. Precise Predictions of Z+n jets at Hadron Colliders , 2013 .
[52] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[53] R. Keith Ellis,et al. Top-Quark Processes at NLO in Production and Decay , 2012, 1204.1513.
[54] L. Dixon,et al. Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.
[55] H. Ita,et al. Colour decompositions of multi-quark one-loop QCD amplitudes , 2011, 1111.4193.
[56] N. Greiner,et al. Automated one-loop calculations with GoSam , 2011, 1111.2034.
[57] L. Dixon,et al. Precise predictions for Z -boson + 4 jet production at hadron colliders , 2011, 1108.2229.
[58] G. Zanderighi,et al. Scalar one-loop integrals for QCD , 2007, 0712.1851.
[59] One-loop corrections to two-quark three-gluon amplitudes☆☆☆ , 1994, hep-ph/9409393.
[60] Simone Alioli,et al. Jet pair production in POWHEG , 2010, 1012.3380.
[61] P. Nason,et al. Matching NLO QCD computations with Parton Shower simulations: the POWHEG method , 2007, 0709.2092.
[62] G. Zanderighi,et al. W+3 jet production at the LHC as a signal or background , 2009, 0910.3671.
[63] G. Bevilacqua,et al. Hadronic top-quark pair production in association with two jets at Next-to-Leading Order QCD , 2011, 1108.2851.
[64] J. Campbell,et al. Hadronic production of a Higgs boson and two jets at next-to-leading order , 2010, 1001.4495.
[65] G. Zanderighi,et al. W+3 jet production at the Tevatron , 2009, 0906.1445.
[66] R. Pittau,et al. Assault on the NLO wishlist: pp→tt̄bb̄ , 2009, 0907.4723.
[67] T. Gleisberg,et al. Next-to-Leading Order QCD Predictions for W+3-Jet Distributions at Hadron Colliders , 2009, 0907.1984.
[68] R. Pittau,et al. Scalar and pseudoscalar Higgs production in association with a top–antitop pair , 2011, 1104.5613.
[69] R. L. Crawford,et al. Review of Particle Properties, 1988-1989 , 1988 .
[70] Tom Melia,et al. NLO QCD corrections for W^+W^- pair production in association with two jets at hadron colliders , 2011, 1104.2327.
[71] L. Dixon,et al. One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.
[72] Peter Uwer,et al. NGluon: A package to calculate one-loop multi-gluon amplitudes , 2010, Comput. Phys. Commun..
[73] Rikkert Frederix,et al. NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM , 2012, 1202.5475.
[74] G. Zanderighi,et al. One-loop calculations in quantum field theory: From Feynman diagrams to unitarity cuts , 2011, 1105.4319.
[75] Giovanni Ossola,et al. Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.
[76] Costas G. Papadopoulos,et al. CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.
[77] A. Kardos,et al. Top quark pair production in association with a Z-boson at NLO accuracy , 2011, 1111.0610.
[78] E. Re,et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.
[79] T. Gleisberg,et al. Next-to-leading order QCD predictions for Z,gamma^*+3-Jet distributions at the tevatron. , 2010, 1004.1659.
[80] Giulia Zanderighi,et al. NLO QCD corrections to five-jet production at LEP and the extraction of αs(MZ) , 2010, 1008.5313.
[81] G. J. van Oldenborgh,et al. FF — a package to evaluate one-loop Feynman diagrams , 1991 .
[82] Stefan Weinzierl,et al. Efficiency improvements for the numerical computation of NLO corrections , 2012, 1205.2096.
[83] P. Mastrolia,et al. Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level , 2010, 1006.0710.
[84] Andreas van Hameren,et al. OneLOop: For the evaluation of one-loop scalar functions , 2010, Comput. Phys. Commun..
[85] Giulia Zanderighi,et al. Generalized unitarity at work: First NLO QCD results for hadronic W+3 jet production , 2009, 0901.4101.