Bayesian fusion of hyperspectral and multispectral images

This paper presents a Bayesian fusion technique for multi-band images. The observed images are related to the high spectral and high spatial resolution image to be recovered through physical degradations, e.g., spatial and spectral blurring and/or subsampling defined by the sensor characteristics. The fusion problem is formulated within a Bayesian estimation framework. An appropriate prior distribution related to the linear mixing model for hyperspectral images is introduced. To compute Bayesian estimators of the scene of interest from its posterior distribution, a Gibbs sampling algorithm is proposed to generate samples asymptotically distributed according to the target distribution. To efficiently sample from this high-dimensional distribution, a Hamiltonian Monte Carlo step is introduced in this Gibbs sampler. The efficiency of the proposed fusion method is evaluated with respect to several state-of-the-art fusion techniques.

[1]  Mathilde Bouriga,et al.  Estimation of covariance matrices based on hierarchical inverse-Wishart priors , 2011, 1106.3203.

[2]  Russell C. Hardie,et al.  MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor , 2004, IEEE Transactions on Image Processing.

[3]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[5]  Nebiye Musaoglu,et al.  Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis , 2009 .

[6]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[7]  Dehong Liu,et al.  Dictionary learning based pan-sharpening , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Lucien Wald,et al.  Some terms of reference in data fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[9]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[11]  Liangpei Zhang,et al.  A super-resolution reconstruction algorithm for hyperspectral images , 2012, Signal Process..

[12]  Aggelos K. Katsaggelos,et al.  A survey of classical methods and new trends in pansharpening of multispectral images , 2011, EURASIP J. Adv. Signal Process..

[13]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[14]  Nikolas P. Galatsanos,et al.  Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images , 2006, IEEE Transactions on Image Processing.

[15]  Junta de Regulación,et al.  " " > , 2007 .

[16]  Jean-Yves Tourneret,et al.  The Adaptive Coherence Estimator is the Generalized Likelihood Ratio Test for a Class of Heterogeneous Environments , 2008, IEEE Signal Processing Letters.

[17]  Jean-Yves Tourneret,et al.  Bayesian Fusion of Multi-Band Images , 2013, IEEE Journal of Selected Topics in Signal Processing.

[18]  V. K. Shettigara,et al.  A generalized component substitution technique for spatial enhancement of multispectral images using , 1992 .

[19]  Marco Diani,et al.  Hyperspectral Signal Subspace Identification in the Presence of Rare Signal Components , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Alfred O. Hero,et al.  Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery , 2009, IEEE Transactions on Signal Processing.

[21]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[22]  José M. P. Nascimento,et al.  Signal subspace identification in hyperspectral imagery , 2012 .

[23]  J. Engels,et al.  Pansharpening of Hyperspectral Images in Urban Areas , 2012 .

[24]  Manjunath V. Joshi,et al.  MAP Estimation for Multiresolution Fusion in Remotely Sensed Images Using an IGMRF Prior Model , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[26]  Xavier Otazu,et al.  Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Quan Pan,et al.  Hyperspectral imagery super-resolution by sparse representation and spectral regularization , 2011, EURASIP J. Adv. Signal Process..

[28]  Peter J. Liu,et al.  Using Gaussian process regression to denoise images and remove artefacts from microarray data , 2007 .

[29]  J. Zhou,et al.  A wavelet transform method to merge Landsat TM and SPOT panchromatic data , 1998 .

[30]  Yifan Zhang,et al.  Noise-Resistant Wavelet-Based Bayesian Fusion of Multispectral and Hyperspectral Images , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[31]  J. Campbell Introduction to remote sensing , 1987 .

[32]  Guangyi Chen,et al.  Super-Resolution of Hyperspectral Imagery Using Complex Ridgelet Transform , 2012, Int. J. Wavelets Multiresolution Inf. Process..