Using automatic differentiation as a general framework for ptychographic reconstruction.

Coherent diffraction imaging methods enable imaging beyond lens-imposed resolution limits. In these methods, the object can be recovered by minimizing an error metric that quantifies the difference between diffraction patterns as observed, and those calculated from a present guess of the object. Efficient minimization methods require analytical calculation of the derivatives of the error metric, which is not always straightforward. This limits our ability to explore variations of basic imaging approaches. In this paper, we propose to substitute analytical derivative expressions with the automatic differentiation method, whereby we can achieve object reconstruction by specifying only the physics-based experimental forward model. We demonstrate the generality of the proposed method through straightforward object reconstruction for a variety of complex ptychographic experimental models.

[1]  Tim Salditt,et al.  Near-field ptychography using lateral and longitudinal shifts , 2015 .

[2]  Yingbin Liang,et al.  Reshaped Wirtinger Flow for Solving Quadratic System of Equations , 2016, NIPS.

[3]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[4]  J. Rodenburg,et al.  Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. , 2004, Physical review letters.

[5]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[6]  P. Thibault,et al.  Maximum-likelihood refinement for coherent diffractive imaging , 2012 .

[7]  I. McNulty,et al.  Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods. , 2014, Optics express.

[8]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[9]  Aggelos K. Katsaggelos,et al.  ADP: Automatic differentiation ptychography , 2018, 2018 IEEE International Conference on Computational Photography (ICCP).

[10]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[12]  Youssef S. G. Nashed,et al.  Distributed Automatic Differentiation for Ptychography , 2017, ICCS.

[13]  Ken Kreutz-Delgado,et al.  The Complex Gradient Operator and the CR-Calculus ECE275A - Lecture Supplement - Fall 2005 , 2009, 0906.4835.

[14]  Cheng-Wei Qiu,et al.  Conjugate gradient method for phase retrieval based on the Wirtinger derivative. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[16]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[17]  Priya Dwivedi,et al.  Lateral position correction in ptychography using the gradient of intensity patterns. , 2018, Ultramicroscopy.

[18]  B. A. D. H. Brandwood A complex gradient operator and its applica-tion in adaptive array theory , 1983 .

[19]  Albert Fannjiang,et al.  Absolute uniqueness of phase retrieval with random illumination , 2011, ArXiv.

[20]  J. Fienup,et al.  Phase retrieval with transverse translation diversity: a nonlinear optimization approach. , 2008, Optics express.

[21]  Andreas Menzel,et al.  Reconstructing state mixtures from diffraction measurements , 2013, Nature.

[22]  Qionghai Dai,et al.  Fourier ptychographic reconstruction using Wirtinger flow optimization. , 2014, Optics express.

[23]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[24]  J. Goodman Introduction to Fourier optics , 1969 .

[25]  Franz Pfeiffer,et al.  Near-field ptychography: phase retrieval for inline holography using a structured illumination , 2013, Scientific Reports.

[26]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[27]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[28]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[29]  James R. Fienup,et al.  Reconstruction of the support of an object from the support of its autocorrelation , 1982 .

[30]  J. Rodenburg,et al.  A phase retrieval algorithm for shifting illumination , 2004 .

[31]  Tom Peterka,et al.  Parallel ptychographic reconstruction. , 2014, Optics express.

[32]  Yonina C. Eldar,et al.  On Fienup Methods for Sparse Phase Retrieval , 2017, IEEE Transactions on Signal Processing.

[33]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[34]  Chao Yang,et al.  Efficient Algorithms for Ptychographic Phase Retrieval , 2014 .

[35]  Andreas Menzel,et al.  Probe retrieval in ptychographic coherent diffractive imaging. , 2009, Ultramicroscopy.

[36]  Li-Hao Yeh,et al.  Analysis and comparison of Fourier Ptychographic phase retrieval algorithms by , 2016 .

[37]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[38]  Lieven De Lathauwer,et al.  Unconstrained Optimization of Real Functions in Complex Variables , 2012, SIAM J. Optim..

[39]  Jeffrey A. Fessler,et al.  Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms , 2003, IEEE Transactions on Medical Imaging.

[40]  W. Hoppe,et al.  Beugung im inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei unperiodischen Objekten , 1969 .

[41]  Laura Waller,et al.  Nonlinear Optimization Algorithm for Partially Coherent Phase Retrieval and Source Recovery , 2016, IEEE Transactions on Computational Imaging.

[42]  A. Talneau,et al.  Strain in a silicon-on-insulator nanostructure revealed by 3D x-ray Bragg ptychography , 2015, Scientific Reports.

[43]  Tie Zhou,et al.  Numerical Optimization Algorithm of Wavefront Phase Retrieval from Multiple Measurements , 2016, 1607.01861.

[44]  J. Rodenburg,et al.  Noise models for low counting rate coherent diffraction imaging. , 2012, Optics express.

[45]  Franz Pfeiffer,et al.  X-ray near-field ptychography for optically thick specimens , 2015 .

[46]  Stefan M. Wild,et al.  3D X-Ray Imaging of Continuous Objects beyond the Depth of Focus Limit. , 2018, Optica.

[47]  R Harder,et al.  High-resolution three-dimensional partially coherent diffraction imaging , 2012, Nature Communications.

[48]  Y. Yao,et al.  On Early Stopping in Gradient Descent Learning , 2007 .

[49]  Hanfei Yan,et al.  Measuring Three-Dimensional Strain and Structural Defects in a Single InGaAs Nanowire Using Coherent X-ray Multiangle Bragg Projection Ptychography. , 2018, Nano letters.

[50]  Shoham Sabach,et al.  Proximal Heterogeneous Block Implicit-Explicit Method and Application to Blind Ptychographic Diffraction Imaging , 2015, SIAM J. Imaging Sci..

[51]  Justin P. Haldar,et al.  Accelerated Wirtinger Flow: A fast algorithm for ptychography , 2018, 1806.05546.

[52]  James R Fienup,et al.  Applications of algorithmic differentiation to phase retrieval algorithms. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[54]  Philipp H. W. Hoffmann,et al.  A Hitchhiker’s Guide to Automatic Differentiation , 2014, Numerical Algorithms.

[55]  Franz Pfeiffer,et al.  Characterization of near-field ptychography. , 2015, Optics express.

[56]  Christoph Rau,et al.  Sampling in x-ray ptychography , 2013 .

[57]  Dougal Maclaurin,et al.  Modeling, Inference and Optimization With Composable Differentiable Procedures , 2016 .

[58]  Leslie J. Allen,et al.  Fast Deterministic Ptychographic Imaging Using X-Rays , 2014, Microscopy and Microanalysis.

[59]  A. Diaz,et al.  Three-dimensional high-resolution quantitative microscopy of extended crystals. , 2011, Nature communications.

[60]  J. Holt,et al.  High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography. , 2015, Nature materials.

[61]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[62]  Yi Li,et al.  A Robust-Equitable Measure for Feature Ranking and Selection , 2017, J. Mach. Learn. Res..

[63]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[64]  P. Ordejón,et al.  Capacitive DNA Detection Driven by Electronic Charge Fluctuations in a Graphene Nanopore , 2015 .

[65]  J. Rodenburg,et al.  Ptychographic transmission microscopy in three dimensions using a multi-slice approach. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[66]  Chao Yang,et al.  Alternating direction methods for classical and ptychographic phase retrieval , 2012 .

[67]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[68]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..