Effective cloud fractions from the Ozone Monitoring Instrument: Theoretical framework and validation

[1] The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board NASA's EOS-Aura satellite is measuring ozone, NO2, and other trace gases with daily global coverage. To correct these trace gas retrievals for the presence of clouds, there are two OMI cloud products, based on different physical processes, namely, absorption by O2–O2 at 477 nm (OMCLDO2) and rotational Raman scattering (RRS) in the UV (OMCLDRR). Both cloud products use a Lambertian cloud model with albedo 0.8 and contain the effective (i.e., radiometric) cloud fraction and the cloud pressure. First, the theoretical framework for the Lambertian cloud model is given and the concept of effective cloud fraction is discussed. Next, an intercomparison of the effective cloud fractions from both products is presented, as well as a comparison with MODIS cloud data. It is shown that the O2–O2 and RRS effective cloud fractions correlate very well (95%) but that there is an offset of about 0.10. From MODIS geometric cloud fraction and cloud optical thickness data a MODIS effective cloud fraction was calculated. The effective cloud fractions from OMCLDO2 and MODIS show a high correlation of 92% with a very small offset (0.01). In order to guide users, a summary of the validation status of effective cloud fraction and cloud pressure from the OMCLDO2 and OMCLDRR cloud products is presented.

[1]  Van de Hulst,et al.  Multiple Light Scattering: Tables, Formulas, and Applications , 1980 .

[2]  M. King,et al.  Cloud Retrieval Algorithms for MODIS : Optical Thickness , Effective Particle Radius , and Thermodynamic Phase , 2000 .

[3]  J. Hovenier,et al.  The adding method for multiple scattering calculations of polarized light , 1987 .

[4]  Robert J. D. Spurr,et al.  Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations , 2008 .

[5]  Xiong Liu,et al.  On the accuracy of Total Ozone Mapping Spectrometer retrievals over tropical cloudy regions , 2001 .

[6]  Henk Eskes,et al.  Error analysis for tropospheric NO2 retrieval from space , 2004 .

[7]  X. Liua,et al.  Errors resulting from assuming opaque Lambertian clouds in TOMS ozone retrieval , 2004 .

[8]  James F. Gleason,et al.  Retrieval of cloud pressure and oceanic chlorophyll content using Raman scattering in GOME ultraviolet spectra , 2004 .

[9]  J. Hovenier,et al.  A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment , 2001 .

[10]  Pieternel F. Levelt,et al.  Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Jay R. Herman,et al.  Earth surface reflectivity climatology at 340–380 nm from TOMS data , 1997 .

[12]  R. B. A. Koelemeijer,et al.  Effects of clouds on ozone column retrieval from GOME UV measurements , 1999 .

[13]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[14]  Joanna Joiner,et al.  First results from the OMI rotational Raman scattering cloud pressure algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  P. Bhartia,et al.  Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User`s Guide , 1993 .

[17]  Piet Stammes,et al.  Cloud pressure retrieval using the O2‐O2 absorption band at 477 nm , 2004 .

[18]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[19]  Robert J. D. Spurr,et al.  Air-mass factor formulation for spectroscopic measurements from satellites: application to formaldeh , 2001 .

[20]  Piet Stammes,et al.  Click Here for Full Article , 1989 .

[21]  Kathrin Wapler,et al.  Satellite Ozone Retrieval Under Broken Cloud Conditions: An Error Analysis Based on Monte Carlo Simulations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Ulrich Platt,et al.  Differential optical absorption spectroscopy (DOAS) , 1994 .

[23]  J. Joiner,et al.  The determination of cloud pressures from rotational Raman scattering in satellite backscatter ultraviolet measurements , 1995 .

[24]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[25]  Geneviève Sèze,et al.  Apparent pressure derived from ADEOS‐POLDER observations in the oxygen A‐band over ocean , 1998 .

[26]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Pawan K. Bhartia,et al.  Comparing OMI-TOMS and OMI-DOAS total ozone column data , 2008 .

[28]  Discrete-ordinate radiative transfer in a stratified medium with first-order rotational Raman scattering , 2008 .

[29]  P. Bhartia,et al.  Rotational Raman scattering (Ring effect) in satellite backscatter ultraviolet measurements. , 1995, Applied optics.

[30]  D. Deirmendjian Electromagnetic scattering on spherical polydispersions , 1969 .

[31]  Pieter Valks,et al.  Ten years of GOME/ERS-2 total ozone data—The new GOME data processor (GDP) version 4: 1. Algorithm description , 2006 .

[32]  Ziauddin Ahmad,et al.  Spectral properties of backscattered UV radiation in cloudy atmospheres , 2004 .

[33]  Kai Yang,et al.  Improving total column ozone retrievals by using cloud pressures derived from Raman scattering in the UV , 2004 .

[34]  Bertrand Cadet,et al.  Comparison of POLDER apparent and corrected oxygen pressure to ARM/MMCR cloud boundary pressures , 2003 .

[35]  Pawan K. Bhartia,et al.  Science objectives of the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[36]  P. Bhartia,et al.  Observations over hurricanes from the ozone monitoring instrument , 2006 .

[37]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[38]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .