An Approach to Ground Moving Target Indication Using Multiple Resolutions of Multilook Synthetic Aperture Radar Images

Ground moving target indication (GMTI) using multiple resolutions of synthetic aperture radar (SAR) images to estimate the clutter scattering statistics is shown to outperform conventional sample matrix inversion space-time adaptive processing GMTI techniques when jamming is not present. A SAR image provides an estimate of scattering from nonmoving targets in the form of a clutter scattering covariance matrix for the GMTI optimum processor. Since the homogeneity of the scattering statistics are unknown, using SAR images at multiple spatial resolutions to estimate the clutter scattering statistics results in more confidence in the final detection decision. Two approaches to calculating the multiple SAR resolutions are investigated. Multiple resolution filter bank smoothing of the full-resolution SAR image is shown to outperform an innovative approach to multilook SAR imaging. The multilook SAR images are calculated from a single measurement vector partitioned base on synthetic sensor locations determined via eigenanalysis of the radar measurement parameters.

[1]  W.C. Ogle,et al.  A multistage nonhomogeneity detector , 2003, Proceedings of the 2003 IEEE Radar Conference (Cat. No. 03CH37474).

[2]  E. Chapin,et al.  GMTI along-track interferometry experiment , 2006, IEEE Aerospace and Electronic Systems Magazine.

[3]  P. G. Richardson Analysis of the adaptive space time processing technique for airborne radar , 1994 .

[4]  A. Farina,et al.  Knowledge-based radar signal and data processing: a tutorial review , 2006, IEEE Signal Processing Magazine.

[5]  Ju-Hong Lee,et al.  Eigenanalysis interference cancellers with robust capabilities , 1997, Signal Process..

[6]  Steven Thomas Smith,et al.  Structured covariance estimation for space-time adaptive processing , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  M. J. Minardi,et al.  Comparison of SAR based GMTI and standard GMTI in a dense target environment , 2006, SPIE Defense + Commercial Sensing.

[8]  Nathan A. Goodman,et al.  SAR AND MTI PROCESSING OF SPARSE SATELLITE CLUSTERS , 2002 .

[9]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[10]  R. Klemm Principles of Space-Time Adaptive Processing , 2002 .

[11]  Roger D. Chamberlain,et al.  Clutter scattering function estimation and ground moving target detection from multiple STAP datacubes , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[12]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1998 .

[13]  Michael D. Zoltowski,et al.  Recursive and knowledge-aided implementations of the multistage Wiener filter , 2003, Proceedings of the 2003 IEEE Radar Conference (Cat. No. 03CH37474).

[14]  D.R. Fuhrmann Structured Covariance Estimation: Theory, Application, and Recent Results , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[15]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[16]  B. Carlson Covariance matrix estimation errors and diagonal loading in adaptive arrays , 1988 .

[17]  J.B. McKinney Radar: A Reluctant Miracle by Colonel John B. Mckinney, U. S. Army , 2006, IEEE Aerospace and Electronic Systems Magazine.

[18]  William L. Melvin,et al.  Space-time adaptive radar performance in heterogeneous clutter , 2000, IEEE Trans. Aerosp. Electron. Syst..

[19]  Raviraj S. Adve,et al.  A two stage hybrid space-time adaptive processing algorithm , 1999, Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249).

[20]  Nathan A. Goodman,et al.  Resolution and synthetic aperture characterization of sparse radar arrays , 2003 .

[21]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[22]  P. Gurram,et al.  Spectral-domain covariance estimation with a priori knowledge , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Charles Edward Muehe,et al.  Displaced-Phase-Center Antenna Technique , 2000 .

[24]  L.E. Brennan,et al.  Theory of Adaptive Radar , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[26]  W.L. Melvin,et al.  An approach to knowledge-aided covariance estimation , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[27]  J. Stiles,et al.  Space-time transmit signal construction for multi-mode radar , 2006, 2006 IEEE Conference on Radar.

[28]  M.C. Wicks,et al.  Space-time adaptive processing: a knowledge-based perspective for airborne radar , 2006, IEEE Signal Processing Magazine.

[29]  P.K. Sanyal,et al.  Tracking Moving Ground Targets from Airborne SAR via Keystoning and Multiple Phase Center Interferometry , 2007, 2007 IEEE Radar Conference.

[30]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[31]  Thong T. Do,et al.  Sparsity adaptive matching pursuit algorithm for practical compressed sensing , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[32]  Christoph H. Gierull,et al.  Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[34]  Karl Gerlach,et al.  SINR improvement in airborne/spaceborne STAP radars using a priori platform knowledge , 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002.

[35]  M. Wicks,et al.  Practical joint domain localised adaptive processing in homogeneous and nonhomogeneous environments. Part 2: Nonhomogeneous environments , 2000 .

[36]  Michael C. Wicks,et al.  ( A tutorial overview ) Knowledge-Based Radar Signal and Data Processing , 2006 .

[37]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[38]  R.L. Fante,et al.  Coherent Integration With Range Migration Using Keystone Formatting , 2007, 2007 IEEE Radar Conference.

[39]  T.K. Sarkar,et al.  Adaptive processing using real weights based on a direct data domain least squares approach , 2006, IEEE Transactions on Antennas and Propagation.

[40]  K. Gerlach,et al.  Robust adaptive matched filtering using the FRACTA algorithm , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[41]  K. Gerlach,et al.  Stap using knowledge-aided covariance estimation and the fracta algorithm , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[42]  T. Sarkar,et al.  A deterministic least-squares approach to space-time adaptive processing (STAP) , 2001 .

[43]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[44]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[45]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[46]  A.M. Haimovich,et al.  Eigenanalysis-based space-time adaptive radar: performance analysis , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[47]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[48]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[49]  J. K. Jao,et al.  Unified Synthetic Aperture Space Time Adaptive Radar (USASTAR) Concept , 2004 .

[50]  L. Bailey The Kalman Filter , 2010 .

[51]  Tom E. Bishop,et al.  Blind Image Restoration Using a Block-Stationary Signal Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[52]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[53]  J.S. Bergin,et al.  Multi-resolution signal processing techniques for airborne radar , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[54]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[55]  William L. Melvin,et al.  Knowledge-based space-time adaptive processing , 1997, Proceedings of the 1997 IEEE National Radar Conference.

[56]  LeRoy A. Gorham,et al.  Ground moving target detection and tracking based on generalized SAR processing and change detection (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[57]  Raviraj S. Adve,et al.  Transform domain localized processing using measured steering vectors and non-homogeneity detection , 1999, Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249).

[58]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[59]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[60]  Shen Chiu,et al.  A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication , 2005 .

[61]  R. Harger Synthetic aperture radar systems , 1970 .

[62]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[63]  Barbara Hubbard,et al.  The World According to Wavelets , 1996 .

[64]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[65]  John B. McKinney Radar: a case history of an invention (the evolution of an innovation) , 2006, IEEE Aerospace and Electronic Systems Magazine.

[66]  R. P. Perry,et al.  SAR imaging of moving targets , 1999 .

[67]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[68]  D. Lingaiah Kalman filtering: Theory and practice using MATLAB, 2nd ed [Book Review] , 2003, IEEE Circuits and Devices Magazine.

[69]  K. Shanmugan,et al.  Random Signals: Detection, Estimation and Data Analysis , 1988 .

[70]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[71]  Joseph R. Guerci,et al.  Multiresolution GMTI radar , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[72]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[73]  Joseph R. Guerci,et al.  On Periodic Autoregressive Processes Estimation , 2000 .

[74]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[75]  A. Haimovich,et al.  The eigencanceler: adaptive radar by eigenanalysis methods , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[76]  J. Guerci,et al.  Improved clutter mitigation performance using knowledge-aided space-time adaptive processing , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[77]  Muralidhar Rangaswamy,et al.  Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds , 2005, IEEE Transactions on Signal Processing.

[78]  R.S. Adve,et al.  Pre-filtering for clutter rejection in beamspace STAP , 2005, IEEE International Radar Conference, 2005..

[79]  Richard K. Moore,et al.  Radar remote sensing and surface scattering and emission theory , 1986 .

[80]  Tapan K. Sarkar,et al.  Performance Comparison Between Statistical-Based and Direct Data Domain STAPs , 2006 .

[81]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[82]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[83]  Karl Gerlach,et al.  Fast converging adaptive processor or a structured covariance matrix , 2000, IEEE Trans. Aerosp. Electron. Syst..

[84]  Barbara Burke Hubbard The World According to Wavelets: The Story of a Mathematical Technique in the Making, Second Edition , 1996 .

[85]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.