Proof-of-Principle Demonstration of Passive Decoy-State Quantum Digital Signatures Over 200 km

The authors demonstrate that passive decoy-state quantum digital signature (QDS) using parametric down-conversion sources can be used effectively for encrypted communication over a distance of 200 km. With this method, the probability of leaking information to the eavesdropper is avoided, which improves security. The superiority of this system is due to its efficient passive decoy-state scheme and low-loss experimental system. The present work can also be extended to the recently proposed measurement-device-independent quantum digital signatures, and thus represents a significant step for QDSs on the path from the laboratory to practical applications.

[1]  Xiang‐Bin Wang,et al.  Reexamination of the decoy-state quantum key distribution with an unstable source , 2010 .

[2]  P. Wallden,et al.  Free-Space Quantum Signatures Using Heterodyne Measurements. , 2016, Physical review letters.

[3]  R. Amiri,et al.  Secure quantum signatures using insecure quantum channels , 2015, 1507.02975.

[4]  R. Serfling Probability Inequalities for the Sum in Sampling without Replacement , 1974 .

[5]  Jian-Wei Pan,et al.  Source attack of decoy-state quantum key distribution using phase information , 2013, 1304.2541.

[6]  Tanja Lange,et al.  Post-quantum cryptography , 2008, Nature.

[7]  Tian-Yin Wang,et al.  Security of quantum digital signatures for classical messages , 2015, Scientific Reports.

[8]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[9]  V. Dunjko,et al.  Experimental demonstration of kilometer-range quantum digital signatures , 2015, 1509.07827.

[10]  M. Fejer,et al.  Experimental passive decoy-state quantum key distribution , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[11]  Erika Andersson,et al.  Quantum digital signatures without quantum memory. , 2013, Physical review letters.

[12]  Juan Miguel Arrazola,et al.  Quantum communication with coherent states and linear optics , 2014, 1406.7189.

[13]  P. J. Clarke,et al.  Realization of quantum digital signatures without the requirement of quantum memory. , 2013, Physical review letters.

[14]  V. Dunjko,et al.  Quantum digital signatures with quantum-key-distribution components , 2014, 1403.5551.

[15]  P. J. Clarke,et al.  Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light , 2012, Nature communications.

[16]  Xiongfeng Ma,et al.  Improved key-rate bounds for practical decoy-state quantum-key-distribution systems , 2016, 1611.02524.

[17]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  Erika Andersson,et al.  Measurement-device-independent quantum digital signatures , 2016 .

[20]  G. Guo,et al.  Faraday-Michelson system for quantum cryptography. , 2005, Optics letters.

[21]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[22]  Masahide Sasaki,et al.  Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution , 2017, Scientific Reports.

[23]  Qin Wang,et al.  Scheme for realizing passive quantum key distribution with heralded single-photon sources , 2016 .

[24]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[25]  Masato Koashi,et al.  Simple and efficient quantum key distribution with parametric down-conversion. , 2007, Physical review letters.

[26]  Masahide Sasaki,et al.  Experimental transmission of quantum digital signatures over 90  km of installed optical fiber using a differential phase shift quantum key distribution system. , 2016, Optics letters.

[27]  Tao Zhang,et al.  Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. , 2008, Physical review letters.

[28]  Chun-Yan Li,et al.  Partially random phase attack to the practical two-way quantum-key-distribution system , 2012, 1305.5985.

[29]  G. Guo,et al.  Stability of phase-modulated quantum key distribution systems , 2004, quant-ph/0408031.

[30]  J F Dynes,et al.  Experimental measurement-device-independent quantum digital signatures , 2017, Nature Communications.

[31]  Yang Liu,et al.  Experimental measurement-device-independent quantum digital signatures over a metropolitan network , 2017, 1703.01021.

[32]  Hui Liu,et al.  Experimental quantum digital signature over 102 km , 2016, 1608.01086.

[33]  Bing Zhu,et al.  Intrinsic-Stabilization Uni-Directional Quantum Key Distribution Between Beijing and Tianjin , 2004, quant-ph/0412023.