Punctured Bent Function Sequences for Watermarked DS-CDMA

In this letter, we investigate the effect of inserting some randomly generated watermarking chips into known spreading sequences in terms of periodic correlations; moreover, we give two design criteria for good watermarked sequences in the sense of: 1) reducing the average correlation value and 2) minimizing the variance of correlations. For <inline-formula> <tex-math notation="LaTeX">$n=2m$ </tex-math></inline-formula> with even <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula>, we propose a set of <inline-formula> <tex-math notation="LaTeX">$2^{m-1}$ </tex-math></inline-formula> punctured bent function sequences of length <inline-formula> <tex-math notation="LaTeX">$2^{n}-1$ </tex-math></inline-formula> punctured by the Singer difference set. The maximum non-trivial correlation magnitude of the proposed set turns out to be <inline-formula> <tex-math notation="LaTeX">$2^{m}+1$ </tex-math></inline-formula>, which is asymptotically two times the Welch bound.

[1]  Su Hu,et al.  Spectrally-Constrained Sequences: Bounds and Constructions , 2018, IEEE Transactions on Information Theory.

[2]  Guang Gong,et al.  Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .

[3]  Sihem Mesnager,et al.  Bent Functions: Fundamentals and Results , 2016 .

[4]  James T. Curran,et al.  On the achievable equivalent security of GNSS ranging code encryption , 2018, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[5]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[6]  Adriaan J. de Lind van Wijngaarden,et al.  Frame synchronization using distributed sequences , 2000, IEEE Trans. Commun..

[7]  Ignacio Fernandez-Hernandez,et al.  Signal Structure-Based Authentication for Civil GNSSs: Recent Solutions and Perspectives , 2017, IEEE Signal Processing Magazine.

[8]  Robert A. Scholtz,et al.  Bent-function sequences , 1982, IEEE Trans. Inf. Theory.

[9]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[10]  Hong-Yeop Song,et al.  Existence of cyclic Hadamard difference sets and its relation to binary sequences with ideal autocorrelation , 1999, Journal of Communications and Networks.

[11]  Xiang Li,et al.  Physical Layer Watermarking of Direct Sequence Spread Spectrum Signals , 2013, MILCOM 2013 - 2013 IEEE Military Communications Conference.

[12]  L. D. Baumert Cyclic Difference Sets , 1971 .

[13]  M. Pursley,et al.  Performance Evaluation for Phase-Coded Spread-Spectrum Multiple-Access Communication - Part II: Code Sequence Analysis , 1977, IEEE Transactions on Communications.

[14]  Chun Yang,et al.  FFT Acquisition of Periodic, Aperiodic, Puncture, and Overlaid Code Sequences in GPS , 2001 .

[15]  L. Scott,et al.  Anti-Spoofing & Authenticated Signal Architectures for Civil Navigation Systems , 2003 .

[16]  Cunsheng Ding,et al.  Almost difference sets and their sequences with optimal autocorrelation , 2001, IEEE Trans. Inf. Theory.

[17]  Marco Villanti,et al.  Design of distributed unique words for enhanced frame synchronization , 2009, IEEE Transactions on Communications.