Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide

A structure of two dimensional T-shaped metal–insulator–metal waveguide with dual-nanocavity is proposed. The two nanocavities located at each side of the slit on the lower metallic surface, act as band rejection filters and are capable of stopping the surface plasmon polaritons (SPPs) at the resonant wavelengths. The Fabry–Perot interferometry theory and the Finite-Difference–Time–Domain method are utilized to investigate the proposed waveguide. The numerical results demonstrate the realization of miniaturized photonic devices for effectively switching the SPPs propagation between the left and right waveguides in one direction.

[1]  Changtao Wang,et al.  Directional excitation of surface plasmons with subwavelength slits , 2008 .

[2]  Jianhua Cui,et al.  Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides , 2009 .

[3]  Stefan A. Maier,et al.  Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides , 2006 .

[4]  Xueming Liu,et al.  High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings. , 2010, Optics letters.

[5]  Guo Ping Wang,et al.  Optical bistability in metal gap waveguide nanocavities. , 2008, Optics express.

[6]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[7]  Michael I. Haftel,et al.  Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures , 2004 .

[8]  Georgios Veronis,et al.  Slow-light enhanced absorption switches in metal-dielectric-metal plasmonic waveguides , 2009, CLEO: 2011 - Laser Science to Photonic Applications.

[9]  Jin Tao,et al.  A subwavelength coupler-type MIM optical filter. , 2009, Optics express.

[10]  E. Ozbay,et al.  Surface wave splitter based on metallic gratings with sub-wavelength aperture. , 2008, Optics express.

[11]  P. Berini Bulk and surface sensitivities of surface plasmon waveguides , 2008 .

[12]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[13]  Q-Han Park,et al.  Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. , 2003, Physical review letters.

[14]  Q-Han Park,et al.  Coupling of surface plasmon polaritons and light in metallic nanoslits. , 2005, Physical review letters.

[15]  B. D. Gupta,et al.  Surface Plasmon resonance based tapered fiber optic sensor with different taper profiles , 2008, 2009 14th OptoElectronics and Communications Conference.

[16]  A. Dereux,et al.  Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments. , 2007, Optics express.

[17]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[18]  H. Herzig,et al.  Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence , 2009 .

[19]  Yujie J. Ding,et al.  Plasmonic surface-wave splitter , 2007 .

[20]  Min Qiu,et al.  Resonator channel drop filters in a plasmon-polaritons metal. , 2006, Optics express.

[21]  Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter , 2009, 0905.3042.

[22]  Yehia Massoud,et al.  Nanoscale surface plasmon based resonator using rectangular geometry , 2007 .

[23]  P Lalanne,et al.  Theory of surface plasmon generation at nanoslit apertures. , 2005, Physical review letters.

[24]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[25]  Changtao Wang,et al.  Beam manipulating by metallic nano-slits with variant widths. , 2005, Optics express.

[26]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[27]  Zhijun Sun,et al.  Coupling of surface plasmon waves in metal/dielectric gap waveguides and single interface waveguides , 2007 .

[28]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[29]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.