A roadmap for graphene

Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

[1]  An Interdisciplinary Review of Sex Differences. , 1977 .

[2]  T. W. Halstead,et al.  Status and Prospects , 1984 .

[3]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[4]  W H Knox,et al.  Wavelength-division multiplexing with femtosecond pulses. , 1995, Optics letters.

[5]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[6]  G. Mourou,et al.  Laser ablation and micromachining with ultrashort laser pulses , 1997 .

[7]  J.-M. Themlin,et al.  HETEROEPITAXIAL GRAPHITE ON 6H-SIC(0001): INTERFACE FORMATION THROUGH CONDUCTION-BAND ELECTRONIC STRUCTURE , 1998 .

[8]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[9]  Hiroshi Ito,et al.  InP/InGaAs Uni-Traveling-Carrier Photodiodes , 2000 .

[10]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[11]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[12]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Seiber Status and Prospects , 2005 .

[14]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[15]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[16]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[17]  P. Ming,et al.  Ab initio calculation of ideal strength and phonon instability of graphene under tension , 2007 .

[18]  A. Bachtold,et al.  Current-induced cleaning of graphene , 2007, 0709.0607.

[19]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[20]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[21]  M. I. Katsnelson,et al.  Chaotic Dirac Billiard in Graphene Quantum Dots , 2007, Science.

[22]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[23]  G. Rietveld,et al.  Quantum resistance metrology in graphene , 2008, 0810.4064.

[24]  K. Novoselov,et al.  Graphene-based liquid crystal device. , 2008, Nano letters (Print).

[25]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[26]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[27]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[28]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[29]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[30]  C. Stampfer,et al.  Tunable graphene single electron transistor. , 2008, Nano letters.

[31]  K. Shepard,et al.  Current saturation in zero-bandgap, top-gated graphene field-effect transistors. , 2008, Nature nanotechnology.

[32]  Mikael Syväjärvi,et al.  Homogeneous large-area graphene layer growth on 6H-SiC(0001) , 2008 .

[33]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[34]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[35]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[36]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[37]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[38]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[39]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[40]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[41]  H. Dai,et al.  Narrow graphene nanoribbons from carbon nanotubes , 2009, Nature.

[42]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[43]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[44]  John E. Bowers,et al.  Mode locked and distributed feedback silicon evanescent lasers , 2009 .

[45]  P. Planken,et al.  Terahertz generation from graphite. , 2009, Optics express.

[46]  F. Xia,et al.  Photocurrent imaging and efficient photon detection in a graphene transistor. , 2009, Nano letters.

[47]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[48]  K. Novoselov,et al.  Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.

[49]  J. Demaree,et al.  Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy , 2009 .

[50]  Itaru Honma,et al.  Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. , 2009, Nano letters.

[51]  M. Segal Selling graphene by the ton. , 2009, Nature nanotechnology.

[52]  V. Kravets,et al.  Fluorographene: a two-dimensional counterpart of Teflon. , 2010, Small.

[53]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[54]  K. Loh,et al.  Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser , 2010, 1003.0154.

[55]  Mikael Syväjärvi,et al.  Towards a quantum resistance standard based on epitaxial graphene. , 2010, Nature nanotechnology.

[56]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[57]  Kian Ping Loh,et al.  The chemistry of graphene , 2010 .

[58]  K. Tu,et al.  Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. , 2010, ACS nano.

[59]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[60]  Yu Huang,et al.  Sub-100 nm channel length graphene transistors. , 2010, Nano letters.

[61]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[62]  C. Dimitrakopoulos,et al.  100 GHz Transistors from Wafer Scale Epitaxial Graphene , 2010, 1002.3845.

[63]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[64]  Kai Yang,et al.  Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. , 2010, Nano letters.

[65]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[66]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[67]  R. Ruoff,et al.  From conception to realization: an historial account of graphene and some perspectives for its future. , 2010, Angewandte Chemie.

[68]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[69]  K. Wada,et al.  Near-Infrared Ge Photodiodes for Si Photonics: Operation Frequency and an Approach for the Future , 2010, IEEE Photonics Journal.

[70]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[71]  S. V. Morozov,et al.  Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy , 2010 .

[72]  K. Müllen,et al.  Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. , 2010, Angewandte Chemie.

[73]  Randy Knize,et al.  Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber , 2010 .

[74]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[75]  Keith A. Jenkins,et al.  High-frequency performance of graphene field effect transistors with saturating IV-characteristics , 2011, 2011 International Electron Devices Meeting.

[76]  G. Pastorin,et al.  Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. , 2011, ACS nano.

[77]  A. Geim Random walk to graphene , 2011 .

[78]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[79]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[80]  Dong Hun Kim,et al.  On-chip optical isolation in monolithically integrated non-reciprocal optical resonators , 2011 .

[81]  Zhenhua Ni,et al.  Broadband graphene polarizer , 2011 .

[82]  A. Bostwick,et al.  Giant Faraday rotation in single- and multilayer graphene , 2010, 1007.5286.

[83]  Philip Kim,et al.  Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements. , 2011, Nano letters.

[84]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[85]  H. Thacker,et al.  25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. , 2011, Optics express.

[86]  W. Haensch,et al.  High-frequency graphene voltage amplifier. , 2011, Nano letters.

[87]  Jonathan N. Coleman,et al.  Two‐Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. , 2011 .

[88]  Andre K. Geim,et al.  Nobel Lecture: Random walk to graphene* , 2011 .

[89]  Jingliang He,et al.  Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser , 2011 .

[90]  S. Bose,et al.  Recent advances in graphene-based biosensors. , 2011, Biosensors & bioelectronics.

[91]  Graphene: materials in the Flatland , 2011 .

[92]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[93]  Debdeep Jena,et al.  Unique prospects for graphene-based terahertz modulators , 2011 .

[94]  A. N. Grigorenko,et al.  Ju l 2 01 1 Strong Plasmonic Enhancement of Photovoltage in Graphene , 2011 .

[95]  Kinam Kim,et al.  A role for graphene in silicon-based semiconductor devices , 2011, Nature.

[96]  Urban Westergren,et al.  50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. , 2011, Optics express.

[97]  Yi Zheng,et al.  A new route to graphene layers by selective laser ablation , 2011 .

[98]  Jong-Hyun Ahn,et al.  Extremely efficient flexible organic light-emitting diodes with modified graphene anode , 2012, Nature Photonics.

[99]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[100]  P. Ajayan,et al.  Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene , 2012, Nature Communications.

[101]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[102]  K. Novoselov,et al.  The mechanics of graphene nanocomposites: A review , 2012 .

[103]  Agnes B Kane,et al.  Biological interactions of graphene-family nanomaterials: an interdisciplinary review. , 2012, Chemical research in toxicology.