Complex step derivative approximation for numerical evaluation of tangent moduli

Abstract In this paper the concept of complex step derivative approximation (CSDA) is revisited and its application in constitutive modeling of hyperelastic materials is presented. The performance of CSDA is demonstrated using simple examples. The idea of CSDA is then extended to numerically evaluate the second Piola–Kirchhoff stress tensor and tangent moduli for five popular hyperelastic constitutive models. The performance of CSDA is compared with the finite difference methods for the considered constitutive models. CSDA numerical scheme is observed to outperform other numerical differentiation schemes in terms of computational efficiency and sensitivity to the size of finite difference interval.

[1]  Paul Steinmann,et al.  On the spatial formulation of anisotropic multiplicative elasto-plasticity , 2003 .

[2]  Antonio Huerta,et al.  Numerical differentiation for non-trivial consistent tangent matrices: an application to the MRS-Lade model ⋆ , 2000 .

[3]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[4]  J. N. Lyness,et al.  Numerical Differentiation of Analytic Functions , 1967 .

[5]  V. G. Petukhov,et al.  Method of continuation for optimization of interplanetary low-thrust trajectories , 2012 .

[6]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[7]  Pierre Sagaut,et al.  Localization of aeroacoustic sound sources in viscous flows by a time reversal method , 2013 .

[8]  M. Chaos Application of sensitivity analyses to condensed-phase pyrolysis modeling , 2013 .

[9]  Jongrae Kim,et al.  Nonlinear robust performance analysis using complex-step gradient approximation , 2006, Autom..

[10]  C. Miehe,et al.  Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity , 1996 .

[11]  Karol Miller,et al.  Using numerical approximation as an intermediate step in analytical derivations: some observations from biomechanics. , 2005, Journal of biomechanics.

[12]  F. Gruttmann,et al.  Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation , 2003 .

[13]  E. Chaikof,et al.  Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. , 2008, Journal of biomechanical engineering.

[14]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[15]  Agustí Pérez-Foguet,et al.  On the formulation of closest‐point projection algorithms in elastoplasticity—part I: The variational structure , 2002 .

[16]  William L. Ko,et al.  Application of Finite Elastic Theory to the Deformation of Rubbery Materials , 1962 .

[17]  A. Huerta,et al.  Numerical differentiation for local and global tangent operators in computational plasticity , 2000 .

[18]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[19]  Antonio Huerta,et al.  Consistent tangent matrices for substepping schemes , 2001 .

[20]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[21]  William H. Press,et al.  Numerical recipes , 1990 .

[22]  Agustí Pérez Foguet,et al.  On the formulation of closest‐point projection algorithms in elastoplasticity—part II: Globally convergent schemes , 2000 .

[23]  Wolfgang Fellin,et al.  Consistent tangent operators for constitutive rate equations , 2002 .

[24]  B. Wang,et al.  Topology Optimization Using Hyper Radial Basis Function Network , 2006 .