An Open Resource for Non-human Primate Imaging

Summary Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.

Daniel S. Margulies | David A. Leopold | Noam Harel | Essa Yacoub | Amir Shmuel | Ravi S. Menon | Stefan Everling | Lei Ai | Pieter R. Roelfsema | Doris Y. Tsao | Ting Xu | Michael P. Milham | Caspar M. Schwiedrzik | Timothy D. Griffiths | Zheng Wang | Charles E. Schroeder | Patrik Lindenfors | Stanislas Dehaene | Alexander Thiele | Thomas Brochier | Matthew F.S. Rushworth | Christopher I. Petkov | Colline Poirier | Suliann Ben Hamed | Leslie G. Ungerleider | John H. Morrison | Bonhwang Koo | Bassem Hiba | Fabien Balezeau | Emmanuel Procyk | Doris Tsao | Julien Sein | Kevin N. Laland | Sze Chai Kwok | Frank Q. Ye | Rogier B. Mars | Céline Amiez | Mark G. Baxter | Erwin L.A. Blezer | Aihua Chen | Paula L. Croxson | Christienne G. Damatac | Damian A. Fair | Lazar Fleysher | Winrich Freiwald | Sean Froudist-Walsh | Carole Guedj | Fadila Hadj-Bouziane | Bechir Jarraya | Benjamin Jung | Sabine Kastner | P. Christiaan Klink | Adam Messinger | Martine Meunier | Kelvin Mok | Jennifer Nacef | Jamie Nagy | Michael Ortiz Rios | Mark Pinsk | Reza Rajimehr | Simon M. Reader | David A. Rudko | Brian E. Russ | Jerome Sallet | Michael Christoph Schmid | Jakob Seidlitz | Elinor L. Sullivan | Leslie Ungerleider | Orlin S. Todorov | Charles R.E. Wilson | Wilbert Zarco | Yong-di Zhou | Charles R. E. Wilson | W. Freiwald | J. Morrison | K. Laland | M. Pinsk | S. Kastner | E. Procyk | M. Rushworth | P. Roelfsema | S. Dehaene | C. Schroeder | C. Petkov | D. Leopold | M. Meunier | F. Hadj-Bouziane | M. Schmid | A. Thiele | A. Shmuel | F. Ye | D. Margulies | M. Milham | S. Ben Hamed | S. Reader | R. Menon | E. Yacoub | S. Everling | C. Schwiedrzik | T. Griffiths | N. Harel | T. Brochier | M. Baxter | R. Mars | J. Sallet | C. Amiez | R. Rajimehr | C. Poirier | L. Fleysher | J. Sein | Adam Messinger | B. Jarraya | Aihua Chen | Wilbert Zarco | D. Rudko | P. Croxson | J. Seidlitz | Yong-Di Zhou | Ting Xu | S. Froudist-Walsh | Lei Ai | Z. Wang | M. Rios | Fabien Balezeau | B. Russ | Carole Guedj | P. C. Klink | K. Mok | C. Damatac | Bonhwang Koo | S. C. Kwok | E. Blezer | B. Hiba | Benjamin Jung | P. Lindenfors | Jennifer Nacef | Jamie Nagy | E. Sullivan | D. A. Fair | D. Fair | P. Klink | Sean Froudist-Walsh | O. Todorov | Jakob Seidlitz | J. Nacef | A. Messinger | J. Nagy

[1]  Stefan Everling,et al.  Broad intrinsic functional connectivity boundaries of the macaque prefrontal cortex , 2014, NeuroImage.

[2]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[3]  Yundi Shi,et al.  A diffusion tensor MRI atlas of the postmortem rhesus macaque brain , 2015, NeuroImage.

[4]  Alexander Opitz,et al.  Delineating the macroscale areal organization of the macaque cortex in vivo , 2017, bioRxiv.

[5]  Richard J. Davidson,et al.  Intergenerational neural mediators of early-life anxious temperament , 2015, Proceedings of the National Academy of Sciences.

[6]  Arno Klein,et al.  The Healthy Brain Network Biobank: An open resource for transdiagnostic research in pediatric mental health and learning disorders , 2017 .

[7]  Murillo Pagnotta,et al.  Primate Brain Anatomy: New Volumetric MRI Measurements for Neuroanatomical Studies , 2018, Brain, Behavior and Evolution.

[8]  Joseph S. Gati,et al.  Resting-state networks in the macaque at 7T , 2011, NeuroImage.

[9]  Daniel S. Margulies,et al.  NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain , 2014, bioRxiv.

[10]  David C. Van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[11]  Yundi Shi,et al.  The UNC-Wisconsin Rhesus Macaque Neurodevelopment Database: A Structural MRI and DTI Database of Early Postnatal Development , 2017, Frontiers in neuroscience.

[12]  David C. Van Essen,et al.  Cortical cartography and Caret software , 2012, NeuroImage.

[13]  Sterling C. Johnson,et al.  A population-average MRI-based atlas collection of the rhesus macaque , 2009, NeuroImage.

[14]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[15]  Stefan Everling,et al.  Intrinsic functional architecture of the macaque dorsal and ventral lateral frontal cortex , 2016, bioRxiv.

[16]  Ravi S. Menon,et al.  Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. , 2012, Journal of neurophysiology.

[17]  Paul M. Thompson,et al.  Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods , 2011, IEEE Transactions on Medical Imaging.

[18]  Damien A. Fair,et al.  The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala , 2016, Neuron.

[19]  Amir Shmuel,et al.  Functional MR imaging in the awake monkey: effects of motion on dynamic off-resonance and processing strategies. , 2007, Magnetic resonance imaging.

[20]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[21]  Anders M. Dale,et al.  A hybrid approach to the Skull Stripping problem in MRI , 2001, NeuroImage.

[22]  Jonathan D. Power A simple but useful way to assess fMRI scan qualities , 2017, NeuroImage.

[23]  Tamara Vanderwal,et al.  Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging , 2015, NeuroImage.

[24]  Lee Friedman,et al.  Measurement of Signal-to-Noise and Contrast-to-Noise in the fBIRN Multicenter Imaging Study , 2006, Journal of Digital Imaging.

[25]  Stefan Everling,et al.  Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI , 2015, NeuroImage.

[26]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[27]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[28]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[29]  Jean-Francois Mangin,et al.  Primatologist: A modular segmentation pipeline for macaque brain morphometry , 2017, NeuroImage.

[30]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[31]  Matthew F. Glasser,et al.  In vivo architectonics: A cortico-centric perspective , 2014, NeuroImage.

[32]  Richard M. Leahy,et al.  BrainSuite: An Automated Cortical Surface Identification Tool , 2000, MICCAI.

[33]  Brian D. Mills,et al.  Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology , 2014, The Journal of Neuroscience.

[34]  David A. Leopold,et al.  A population MRI brain template and analysis tools for the macaque , 2017, NeuroImage.

[35]  A. Toga,et al.  The Rhesus Monkey Brain in Stereotaxic Coordinates , 1999 .

[36]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[37]  Amir Shmuel,et al.  Robust controlled functional MRI in alert monkeys at high magnetic field: Effects of jaw and body movements , 2007, NeuroImage.

[38]  Ravi S. Menon,et al.  Frontoparietal Functional Connectivity in the Common Marmoset , 2016, Cerebral cortex.

[39]  M. Mallar Chakravarty,et al.  An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space) , 2011, NeuroImage.

[40]  Daniel Glen,et al.  Three-Dimensional Digital Template Atlas of the Macaque Brain , 2016, Cerebral cortex.

[41]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[42]  S. Everling,et al.  Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations , 2012, Front. Neuroanat..

[43]  Bharat B. Biswal,et al.  Making data sharing work: The FCP/INDI experience , 2013, NeuroImage.

[44]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[45]  Gary H. Glover,et al.  Reducing inter-scanner variability of activation in a multicenter fMRI study: Role of smoothness equalization , 2006, NeuroImage.

[46]  Margaret D. King,et al.  The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry , 2012, Front. Neurosci..

[47]  Torsten Rohlfing,et al.  The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization , 2012, Front. Neuroinform..

[48]  James K. Rilling,et al.  Comparative primate neuroimaging: insights into human brain evolution , 2014, Trends in Cognitive Sciences.

[49]  D. Leopold,et al.  Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest , 2008, Human brain mapping.

[50]  Peter B. Jones,et al.  Morphometric Similarity Networks Detect Microscale Cortical Organization and Predict Inter-Individual Cognitive Variation , 2017, Neuron.

[51]  Cornelia I Bargmann,et al.  The Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) initiative and neurology. , 2014, JAMA neurology.

[52]  Daniel P. Kennedy,et al.  Enhancing studies of the connectome in autism using the autism brain imaging data exchange II , 2017, Scientific Data.

[53]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[54]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[55]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[56]  Xiaoping P. Hu,et al.  Diffusion tensor imaging reveals evolution of primate brain architectures , 2013, Brain Structure and Function.

[57]  M. Giannelli,et al.  Characterization of Nyquist ghost in EPI‐fMRI acquisition sequences implemented on two clinical 1.5 T MR scanner systems: effect of readout bandwidth and echo spacing , 2010, Journal of applied clinical medical physics.

[58]  Stefan Everling,et al.  Face Patch Resting State Networks Link Face Processing to Social Cognition , 2015, PLoS biology.

[59]  Guy A. Orban,et al.  Monkey Cortex through fMRI Glasses , 2014, Neuron.

[60]  M. Sigman,et al.  Signature of consciousness in the dynamics of resting-state brain activity , 2015, Proceedings of the National Academy of Sciences.

[61]  Jean-Philippe Thiran,et al.  Automatic quality assessment in structural brain magnetic resonance imaging , 2009, Magnetic resonance in medicine.

[62]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[63]  Olivier Coulon,et al.  The average baboon brain: MRI templates and tissue probability maps from 89 individuals , 2016, NeuroImage.

[64]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[65]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.