The SEPALLATA-like CaSEP5 gene regulates flower sepal, pedicel, and fruit development in pepper (Capsicum annuum L.)

[1]  Peng Wang,et al.  Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L. , 2018, Theoretical and Applied Genetics.

[2]  J. Estevez,et al.  Auxin and Cellular Elongation1 , 2016, Plant Physiology.

[3]  Dabing Zhang,et al.  Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. , 2015, Molecular plant.

[4]  W. Vriezen,et al.  Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development , 2015, Journal of experimental botany.

[5]  Dabing Zhang,et al.  Jasmonic acid regulates spikelet development in rice , 2014, Nature Communications.

[6]  Xiang Li,et al.  Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. , 2014, Plant, cell & environment.

[7]  Hong-Hwa Chen,et al.  Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes , 2014, The New phytologist.

[8]  Wenchao Zhao,et al.  An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system , 2013 .

[9]  W. Vriezen,et al.  ABA-deficiency results in reduced plant and fruit size in tomato. , 2012, Journal of plant physiology.

[10]  J. Chandler The Hormonal Regulation of Flower Development , 2011, Journal of Plant Growth Regulation.

[11]  Victor A Albert,et al.  Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins , 2010, BMC Plant Biology.

[12]  C. Perrot-Rechenmann,et al.  Cellular responses to auxin: division versus expansion. , 2010, Cold Spring Harbor perspectives in biology.

[13]  G. Theißen,et al.  Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). , 2010, The Plant journal : for cell and molecular biology.

[14]  Lisha Shen,et al.  Regulation of floral patterning by flowering time genes. , 2009, Developmental cell.

[15]  C. Smaczniak,et al.  Target Genes of the MADS Transcription Factor SEPALLATA3: Integration of Developmental and Hormonal Pathways in the Arabidopsis Flower , 2009, PLoS biology.

[16]  Zhiwei Cheng,et al.  Gibberellin Acts through Jasmonate to Control the Expression of MYB21, MYB24, and MYB57 to Promote Stamen Filament Growth in Arabidopsis , 2009, PLoS genetics.

[17]  Jennifer L. Nemhauser,et al.  Cross-regulatory mechanisms in hormone signaling , 2009, Plant Molecular Biology.

[18]  Stefan de Folter,et al.  SEPALLATA3: the 'glue' for MADS box transcription factor complex formation , 2009, Genome Biology.

[19]  Yunde Zhao,et al.  NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis , 2008, Proceedings of the National Academy of Sciences.

[20]  M. Oliveira,et al.  Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch) , 2008, Tree Genetics & Genomes.

[21]  Yunde Zhao,et al.  NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis , 2007, Proceedings of the National Academy of Sciences.

[22]  Pamela S Soltis,et al.  The ABC model and its applicability to basal angiosperms. , 2007, Annals of botany.

[23]  B. Mueller‐Roeber,et al.  Auxin Flow in Anther Filaments is Critical for Pollen Grain Development through Regulating Pollen Mitosis , 2006, Plant Molecular Biology.

[24]  G. Sandberg,et al.  Arabidopsis KNOXI Proteins Activate Cytokinin Biosynthesis , 2005, Current Biology.

[25]  E. Kellogg,et al.  SEPALLATA gene diversification: brave new whorls. , 2005, Trends in plant science.

[26]  S. Neill,et al.  Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. , 2005, Journal of experimental botany.

[27]  D. Soltis,et al.  The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. , 2005, Genetics.

[28]  Pamela S Soltis,et al.  Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. , 2004, American journal of botany.

[29]  P. Robles,et al.  The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity , 2004, Current Biology.

[30]  T. Teeri,et al.  Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Kramer,et al.  Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. , 2004, Molecular biology and evolution.

[32]  Gynheung An,et al.  Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E. Kramer,et al.  Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. , 2004, Genetics.

[34]  Richard G. H. Immink,et al.  The MADS Box Gene FBP2 Is Required for SEPALLATA Function in Petunia Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010280. , 2003, The Plant Cell Online.

[35]  Shihshieh Huang,et al.  Transgenic Studies on the Involvement of Cytokinin and Gibberellin in Male Development , 2003, Plant Physiology.

[36]  G. Angenent,et al.  Analysis of the petunia MADS-box transcription factor family , 2003, Molecular Genetics and Genomics.

[37]  B. Veit,et al.  Down-Regulation of TM29, a TomatoSEPALLATA Homolog, Causes Parthenocarpic Fruit Development and Floral Reversion1 , 2002, Plant Physiology.

[38]  S. Hake,et al.  The Gibberellin Pathway Mediates KNOTTED1-Type Homeobox Function in Plants with Different Body Plans , 2002, Current Biology.

[39]  S. Dinesh-Kumar,et al.  Virus-induced gene silencing in tomato. , 2002, The Plant journal : for cell and molecular biology.

[40]  J. Vrebalov,et al.  A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus , 2002, Science.

[41]  G. An,et al.  Characterization of tobacco MADS-box genes involved in floral initiation. , 2002, Plant & cell physiology.

[42]  J. Bowman,et al.  Turning floral organs into leaves, leaves into floral organs. , 2001, Current opinion in genetics & development.

[43]  G. Theissen,et al.  Development of floral organ identity: stories from the MADS house. , 2001, Current opinion in plant biology.

[44]  Heinz Saedler,et al.  Plant biology: Floral quartets , 2001, Nature.

[45]  T. Teeri,et al.  GRCD1, an AGL2-like MADS Box Gene, Participates in the C Function during Stamen Development in Gerbera hybrida , 2000, Plant Cell.

[46]  G. Ditta,et al.  B and C floral organ identity functions require SEPALLATA MADS-box genes , 2000, Nature.

[47]  E. Meyerowitz,et al.  MADS domain proteins in plant development. , 1997, Biological chemistry.

[48]  E. Meyerowitz,et al.  Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. , 1997, Molecular biology of the cell.

[49]  A. Sharrocks,et al.  The MADS-box family of transcription factors. , 1995, European journal of biochemistry.

[50]  L. Pnueli,et al.  The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. , 1994, The Plant cell.

[51]  Mian Wu,et al.  Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid , 1993, Plant Molecular Biology.

[52]  H. Sommer,et al.  Floral development and expression of floral homeotic genes are influenced by cytokinins. , 1993, The Plant journal : for cell and molecular biology.

[53]  E. Coen,et al.  The war of the whorls: genetic interactions controlling flower development , 1991, Nature.

[54]  Y. Masuda Auxin-induced cell elongation and cell wall changes , 1990, The botanical magazine = Shokubutsu-gaku-zasshi.

[55]  B. Sotta,et al.  A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisic acid and zeatin-riboside , 1986 .

[56]  Liu Chen,et al.  The Identification of Interaction with PAP3 and PPI Protein in Pepper , 2016 .

[57]  L. Mao,et al.  The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. , 2014, The Plant journal : for cell and molecular biology.

[58]  E. Aloni,et al.  Role of auxin in regulating Arabidopsis flower development , 2005, Planta.