Scintillation Detectors of Radiation: Excitations at High Densities and Strong Gradients

This chapter discusses the electron-hole recombination processes that occur in the high excitation densities and strong radial gradients of particle tracks in scintillator detectors of radiation. The particle tracks are commonly those of high-energy Compton- or photo-electrons produced in energy-resolving gamma-ray detectors, but could also include those of heavier charged particles such as those following interaction with neutrons. In energy-resolving radiation detectors, intrinsic proportionality of light yield to gamma ray energy or electron energy is an important concern. This chapter gives special emphasis to understanding the physical basis for nonproportionality, while reviewing recent results on fundamental physics of nonlinear quenching, cooling and capture of hot electrons, co-evolving free-carrier and exciton populations, and diffusion in the dense and highly structured excitation landscape of electron tracks. Particular attention is paid to short-pulse laser experiments at Wake Forest University giving data and insight on the above phenomena complementary to more traditional scintillator experiments using gamma-ray or electron excitation. Numerical modeling of diffusion, nonlinear quenching (NLQ), exciton formation, and linear capture processes serves to test and establish links between the laser excitation and particle excitation measurements.

[1]  T. Waite,et al.  Theoretical Treatment of the Kinetics of Diffusion-Limited Reactions , 1957 .

[2]  Werner Martienssen,et al.  Über die excitonenbanden der alkalihalogenidkristalle , 1957 .

[3]  K. Teegarden,et al.  Ultraviolet Absorption of Alkali Halides , 1959 .

[4]  R. B. Murray,et al.  Scintillation Response of Activated Inorganic Crystals to Various Charged Particles , 1961 .

[5]  J. B. Birks,et al.  CHAPTER 5 – THE DETECTION OF SCINTILLATIONS , 1964 .

[6]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[7]  G. Baldini,et al.  Optical Absorption Spectra of the Alkali Halides at 10°K , 1967 .

[8]  Dietmar Fröhlich,et al.  Two‐Photon Spectroscopy in CsI and CsBr , 1970 .

[9]  H. B. Dietrich,et al.  Kinetics of the diffusion of self-trapped holes in alkali halide scintillators , 1972 .

[10]  M. Couzi,et al.  Infrared and Raman study of the optical phonons in Bi4Ge3O12 single crystal , 1976 .

[11]  M. L. Isakova,et al.  Analysis of fluorescence kinetics upon intense picosecond laser pumping: excitation dynamics in photosynthesizing systems , 1984 .

[12]  Antonangeli,et al.  Reflectivity of bismuth germanate. , 1988, Physical review. B, Condensed matter.

[13]  E. W. Stryland,et al.  High-sensitivity, single-beam n(2) measurements. , 1989, Optics letters.

[14]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[15]  Roger G. Williams,et al.  Self-Trapped Excitons , 1993 .

[16]  K. Köhler,et al.  Auger recombination in intrinsic GaAs , 1993 .

[17]  Hirai,et al.  Transient absorption due to self-trapped excitons in NaBr and NaI. , 1993, Physical review. B, Condensed matter.

[18]  Nakayama,et al.  Origin of the 4.1-eV luminescence in pure CsI scintillator. , 1995, Physical review. B, Condensed matter.

[19]  J. D. Valentine,et al.  Benchmarking the Compton coincidence technique for measuring electron response non-proportionality in inorganic scintillators , 1995, 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record.

[20]  I. Dafinei,et al.  Decay kinetics of Ce3+ ions under gamma and KrF excimer laser excitation in CeF3 single crystals , 1995 .

[21]  E. D. Aluker,et al.  Radiation-Stimulated Conductivity of Some Alkali Halides Induced by 50 ps Electron Pulse Irradiation , 1998 .

[22]  Roger G. Williams,et al.  Electronic structure and optical properties of CdMoO 4 and CdWO 4 , 2000 .

[23]  J. Gabrusenoks,et al.  Infrared and Raman spectroscopy of WO3 and CdWO4 , 2001 .

[24]  M. Moszynski,et al.  Intrinsic energy resolution of NaI(Tl) , 2002 .

[25]  S. Marchetti,et al.  The Auger recombination coefficient in InAs and GaSb derived from the infrared dynamical plasma reflectivity , 2002 .

[26]  I. Kamenskikh,et al.  Optical and luminescent properties of anisotropic tungstate crystals , 2002 .

[27]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[28]  A. Vasil’ev,et al.  From Luminescence Non-Linearity to Scintillation Non-Proportionality , 2008, IEEE Transactions on Nuclear Science.

[29]  David J. Singh Near optical isotropy in noncubic SrI2: Density functional calculations , 2008 .

[30]  M. Itoh,et al.  Optical anisotropy and electronic structures of CdMoO4 and CdWO4 crystals: Polarized reflection measurements, x-ray photoelectron spectroscopy, and electronic structure calculations , 2008 .

[31]  Nikita Fedorov,et al.  Exciton-exciton interactions in CdWO4 irradiated by intense femtosecond vacuum ultraviolet pulses , 2009 .

[32]  G. Bizarri,et al.  Measurements of NaI(Tl) Electron Response: Comparison of Different Samples , 2009, IEEE Transactions on Nuclear Science.

[33]  S. Curtarolo,et al.  Comparative Study of Nonproportionality and Electronic Band Structures Features in Scintillator Materials , 2009, IEEE Transactions on Nuclear Science.

[34]  G. Bizarri,et al.  An analytical model of nonproportional scintillator light yield in terms of recombination rates , 2009 .

[35]  S. Kerisit,et al.  Trapping of Holes and Excitons in Scintillators: CsI and ${\rm LaX}_{3}$ ( ${\rm X}={\rm Cl}$, Br) , 2010, IEEE Transactions on Nuclear Science.

[36]  J. Q. Grim,et al.  High excitation density, quenching, and radiative kinetics in CsI:Tl scintillator , 2010 .

[37]  M Kirm,et al.  Exciton–Exciton Interaction in CdWO$_{4}$ Under Resonant Excitation by Intense Femtosecond Laser Pulses , 2010, IEEE Transactions on Nuclear Science.

[38]  William W Moses,et al.  Picosecond Studies of Transient Absorption Induced by BandGap Excitation of CsI and CsI:Tl at Room Temperature , 2010, IEEE Transactions on Nuclear Science.

[39]  William W. Moses,et al.  Excitation density, diffusion‐drift, and proportionality in scintillators , 2011 .

[40]  William W. Moses,et al.  The role of hole mobility in scintillator proportionality , 2011 .

[41]  Mark S. Bryant,et al.  Raman spectroscopy study of BaI2 :Eu and SrI2 :Eu scintillator crystals , 2011 .

[42]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[43]  W. W. Moses,et al.  Nonproportionality of Scintillator Detectors: Theory and Experiment. II , 2009, IEEE Transactions on Nuclear Science.

[44]  William W. Moses,et al.  A transport-based model of material trends in nonproportionality of scintillators , 2011 .

[45]  Jai Singh,et al.  Study of nonproportionality in the light yield of inorganic scintillators , 2011 .

[46]  YuLong Xie,et al.  Computer simulation of electron thermalization in CsI and CsI(Tl) , 2011 .

[47]  YuLong Xie,et al.  Yield, variance and spatial distribution of electron-hole pairs in CsI , 2011 .

[48]  A. Owens,et al.  Picosecond dynamics of hot carriers and phonons and scintillator non-proportionality , 2012, 1206.1780.

[49]  YuLong Xie,et al.  Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators , 2012 .

[50]  Arnold Burger,et al.  Host structure dependence of light yield and proportionality in scintillators in terms of hot and thermalized carrier transport , 2012 .

[51]  A. Vasil’ev,et al.  Recombination of Correlated Electron–Hole Pairs With Account of Hot Capture With Emission of Optical Phonons , 2012, IEEE Transactions on Nuclear Science.

[52]  R. T. Williams,et al.  The roles of thermalized and hot carrier diffusion in determining light yield and proportionality of scintillators , 2012 .

[53]  Band tail absorption saturation in CdWO4 with 100 fs laser pulses. , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  Arnold Burger,et al.  Nonlinear quenching of densely excited states in wide-gap solids , 2013 .

[55]  Arnold Burger,et al.  Electron thermalization and trapping rates in pure and doped alkali and alkaline-earth iodide crystals studied by picosecond optical absorption , 2014 .