Simulation method of fractional systems based on the discrete-time approximation of the Caputo fractional derivatives

This paper proposes a new method for the simulation of the fractional systems. It deals with the approximation methods of the fractional derivative. It compare the approximation based on Grünwald with Caputo approximation. The efficiency of each approximation methods in termes of execution time and quadratic error is evaluated for different differential orders and stepsize. The best approximation method is used to develop an original simulation method to demonstrate its effectiveness.

[1]  A. Oustaloup La dérivation non entière , 1995 .

[2]  M. Aoun,et al.  Systèmes linéaires non entiers et identification par bases orthogonales non entières , 2005 .

[3]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[4]  Marc Weilbeer,et al.  Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background , 2005 .

[5]  Kai Diethelm,et al.  Generalized compound quadrature formulae for finite-part integrals , 1997 .

[6]  A. Oustaloup,et al.  Numerical Simulations of Fractional Systems: An Overview of Existing Methods and Improvements , 2004 .

[7]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[8]  Curtis F. Gerald,et al.  APPLIED NUMERICAL ANALYSIS , 1972, The Mathematical Gazette.

[9]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[10]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[11]  Mehdi Dalir,et al.  Applications of Fractional Calculus , 2010 .

[12]  Zaid M. Odibat,et al.  Approximations of fractional integrals and Caputo fractional derivatives , 2006, Appl. Math. Comput..

[13]  Zaid M. Odibat,et al.  Computational algorithms for computing the fractional derivatives of functions , 2009, Math. Comput. Simul..

[14]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[15]  Kai Diethelm,et al.  An Improvement of a Nonclassical Numerical Method for the Computation of Fractional Derivatives , 2009 .