Ecology and genomics of Bacillus subtilis.

Bacillus subtilis is a remarkably diverse bacterial species that is capable of growth within many environments. Recent microarray-based comparative genomic analyses have revealed that members of this species also exhibit considerable genomic diversity. The identification of strain-specific genes might explain how B. subtilis has become so broadly adapted. The goal of identifying ecologically adaptive genes could soon be realized with the imminent release of several new B. subtilis genome sequences. As we embark upon this exciting new era of B. subtilis comparative genomics we review what is currently known about the ecology and evolution of this species.

[1]  S Dusko Ehrlich,et al.  Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species , 2004, Genome Biology.

[2]  M. Roberts,et al.  Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. , 1999, International journal of systematic bacteriology.

[3]  D. Dubnau,et al.  Specific activation of the Bacillus quorum‐sensing systems by isoprenylated pheromone variants , 2002, Molecular microbiology.

[4]  R. Losick,et al.  Swarming motility in undomesticated Bacillus subtilis , 2003, Molecular microbiology.

[5]  H. Bais,et al.  A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots , 2007, Planta.

[6]  F. Siñeriz,et al.  Characteristics of an inulinase produced by Bacillus subtilis 430A, a strain isolated from the rhizosphere of Vernonia herbacea (Vell Rusby) , 1991, Applied and environmental microbiology.

[7]  M. McInerney,et al.  Anaerobic Growth of Bacillus mojavensis and Bacillus subtilis Requires Deoxyribonucleosides or DNA , 2004, Applied and Environmental Microbiology.

[8]  Yun Luo,et al.  Analysis of the Life Cycle of the Soil Saprophyte Bacillus cereus in Liquid Soil Extract and in Soil , 2006, Applied and Environmental Microbiology.

[9]  J. Norris,et al.  A STUDY OF ANTIGENS OF THE AEROBIC SPOREFORMING BACTERIA , 1961 .

[10]  R. Losick,et al.  Targets of the master regulator of biofilm formation in Bacillus subtilis , 2006, Molecular microbiology.

[11]  D. Karamata,et al.  Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. , 2002, Microbiology.

[12]  Roberto Kolter,et al.  Bacillus subtilis Genome Diversity , 2006, Journal of bacteriology.

[13]  M. Woodward,et al.  Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. , 2001, Veterinary microbiology.

[14]  C. Luebbert,et al.  Comparative Genomic Hybridization: insights from an empirical , 2005 .

[15]  R. Losick,et al.  A master regulator for biofilm formation by Bacillus subtilis , 2004, Molecular microbiology.

[16]  Peter F. Hallin,et al.  Ten years of bacterial genome sequencing: comparative-genomics-based discoveries , 2006, Functional & Integrative Genomics.

[17]  T. Taguchi,et al.  Characterization of Bacillus strains of marine origin. , 1999, International microbiology : the official journal of the Spanish Society for Microbiology.

[18]  M. Nakano,et al.  Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth , 1997, Journal of bacteriology.

[19]  G. Weinstock,et al.  Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032 , 2007, PloS one.

[20]  M. Clementino,et al.  Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis , 2008, Antonie van Leeuwenhoek.

[21]  Y. Itoh,et al.  A New IS4 Family Insertion Sequence, IS4Bsu1, Responsible for Genetic Instability of Poly-γ-Glutamic Acid Production in Bacillus subtilis , 2000, Journal of bacteriology.

[22]  Mariusz Bikowski,et al.  Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. , 2007, Acta biochimica Polonica.

[23]  C. Kuske,et al.  Composition of Bacillus Species in Aerosols from 11 U.S. Cities , 2006, Journal of forensic sciences.

[24]  B. Morgenstern,et al.  Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42 , 2007, Nature Biotechnology.

[25]  I. R. Hill,et al.  Populations of Spore-forming Bacteria in an Acid Forest Soil, with Special Reference to Bacillus subtilis , 1974 .

[26]  A. Grossman,et al.  Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Riley,et al.  Homology among nearly all plasmids infecting three Bacillus species , 1996, Journal of bacteriology.

[28]  R. Isticato,et al.  Fate and Dissemination of Bacillus subtilis Spores in a Murine Model , 2001, Applied and Environmental Microbiology.

[29]  K. Konstantinidis,et al.  The bacterial species definition in the genomic era , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  A. A. Prozorov,et al.  The conjugal transfer of plasmid pUB110 in Bacillus subtilis in soils of different natural landscapes , 2005, Microbiology.

[31]  S. Cutting,et al.  Bacillus Probiotics: Spore Germination in the Gastrointestinal Tract , 2002, Applied and Environmental Microbiology.

[32]  A. Adesiyun,et al.  Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum) , 2007, Journal of applied microbiology.

[33]  D. Dubnau,et al.  DNA uptake during bacterial transformation , 2004, Nature Reviews Microbiology.

[34]  Identification and molecular characterization of a novel Bacillus strain capable of degrading Tween-80. , 2001, FEMS microbiology letters.

[35]  C W Hill,et al.  Mosaic structure of plasmids from natural populations of Escherichia coli. , 1996, Genetics.

[36]  X. Zhou,et al.  Sexuality in a natural population of bacteria–Bacillus subtilis challenges the clonal paradigm , 1992, Molecular ecology.

[37]  Alain Giron,et al.  Detection and characterization of horizontal transfers in prokaryotes using genomic signature , 2005, Nucleic acids research.

[38]  K. Duncan,et al.  GENETIC EXCHANGE BETWEEN BACILLUS SUBTILIS AND BACILLUS LICHENIFORMIS: VARIABLE HYBRID STABILITY AND THE NATURE OF BACTERIAL SPECIES , 1989, Evolution; international journal of organic evolution.

[39]  A. Pandey,et al.  Bacillus species: the dominant bacteria of the rhizosphere of established tea bushes. , 1997, Microbiological research.

[40]  R. Losick,et al.  A major protein component of the Bacillus subtilis biofilm matrix , 2006, Molecular microbiology.

[41]  Rainer Merkl,et al.  The Complete Genome Sequence of Bacillus licheniformis DSM13, an Organism with Great Industrial Potential , 2004, Journal of Molecular Microbiology and Biotechnology.

[42]  Y. Inatsu,et al.  Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand , 2006, Letters in applied microbiology.

[43]  R. Jaenicke Abundance of Cellular Material and Proteins in the Atmosphere , 2005, Science.

[44]  R. Reinhardt,et al.  The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Roberto Kolter,et al.  Biofilms: the matrix revisited. , 2005, Trends in microbiology.

[46]  Sierd Bron,et al.  Bacillus subtilis and its closest relatives: from genes to cells , 2001 .

[47]  L. Tran,et al.  Divergent structure of the ComQXPA quorum‐sensing components: molecular basis of strain‐specific communication mechanism in Bacillus subtilis , 2000, Molecular microbiology.

[48]  J. Vivanco,et al.  Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production1 , 2004, Plant Physiology.

[49]  F. Blattner,et al.  Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  C. Istock,et al.  Genetic exchange in Bacillus subtilis in soil , 1978, Molecular and General Genetics MGG.

[51]  D. Dubnau,et al.  Competence for transformation: a matter of taste. , 1999, Current opinion in microbiology.

[52]  O. Kandler,et al.  International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. , 1987, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[53]  M. Roberts,et al.  RECOMBINATION AND MIGRATION RATES IN NATURAL POPULATIONS OF BACILLUS SUBTILIS AND BACILLUS MOJAVENSIS , 1995, Evolution; international journal of organic evolution.

[54]  Lynn Y. Huynh,et al.  Global Genetic Population Structure of Bacillus anthracis , 2007, PloS one.

[55]  B. Lazazzera,et al.  Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly‐γ‐dl‐glutamic acid production and biofilm formation , 2005, Molecular microbiology.

[56]  S. Ehrlich,et al.  Genes Involved in Formation of Structured Multicellular Communities by Bacillus subtilis , 2004, Journal of bacteriology.

[57]  M. Roberts,et al.  The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. , 1995, Genetics.

[58]  R. Kolter,et al.  Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate , 2006 .

[59]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.

[60]  S. Cutting,et al.  The use of bacterial spore formers as probiotics. , 2005, FEMS microbiology reviews.

[61]  K. Entian,et al.  Subtilosin Production by Two Bacillus subtilis Subspecies and Variance of the sbo-alb Cluster , 2004, Applied and Environmental Microbiology.

[62]  P. Tortosa,et al.  Specificity and Genetic Polymorphism of theBacillus Competence Quorum-Sensing System , 2001, Journal of bacteriology.

[63]  M. Bailey,et al.  The Horizontal Gene Pool: an ESF workshop summary. , 2004, Plasmid.

[64]  Christopher M Thomas Horizontal Gene Pool: Bacterial Plasmids and Gene Spread , 2000 .

[65]  in chief George M. Garrity Bergey’s Manual® of Systematic Bacteriology , 1989, Springer New York.

[66]  A. Grossman,et al.  Biochemical and genetic characterization of a competence pheromone from B. subtilis , 1994, Cell.

[67]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[68]  B. Lazazzera,et al.  The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis , 2001, Molecular microbiology.

[69]  M. Woodward,et al.  Screening for Bacillus Isolates in the Broiler Gastrointestinal Tract , 2005, Applied and Environmental Microbiology.

[70]  W. Haynes,et al.  The genus Bacillus , 1973 .

[71]  Neil Hall,et al.  Advanced sequencing technologies and their wider impact in microbiology , 2007, Journal of Experimental Biology.

[72]  Santiago Garcia-Vallvé,et al.  HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes , 2003, Nucleic Acids Res..

[73]  D. Dubnau,et al.  Diversifying Selection at the Bacillus Quorum-Sensing Locus and Determinants of Modification Specificity during Synthesis of the ComX Pheromone , 2004, Journal of bacteriology.

[74]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Eduardo N. Taboada,et al.  Studying bacterial genome dynamics using microarray-based comparative genomic hybridization. , 2007, Methods in molecular biology.

[76]  M. Otto,et al.  Bacterial evasion of antimicrobial peptides by biofilm formation. , 2006, Current topics in microbiology and immunology.

[77]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  R. Fall,et al.  A simple method to isolate biofilm-forming Bacillus subtilis and related species from plant roots. , 2004, Systematic and applied microbiology.

[79]  F. Cazorla,et al.  Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity , 2007, Journal of applied microbiology.

[80]  M. Weinbauer,et al.  Are viruses driving microbial diversification and diversity? , 2003, Environmental microbiology.

[81]  N. Munakata,et al.  Diverse capacities for the adaptive response to DNA alkylation in Bacillus species and strains. , 1995, Mutation research.

[82]  A. Henriques,et al.  The Intestinal Life Cycle of Bacillus subtilis and Close Relatives , 2006, Journal of bacteriology.

[83]  T. Stein Bacillus subtilis antibiotics: structures, syntheses and specific functions , 2005, Molecular microbiology.

[84]  Â.,et al.  Populations of Spore-forming Bacteria in an Acid Forest Soil , with Special Reference to Bacillus subtilis , 2022 .

[85]  E. Ricca,et al.  Bacterial spore formers: probiotics and emerging applications. , 2004 .

[86]  T. Leser,et al.  Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs , 2008, Journal of applied microbiology.