Tree Species Classification in a Highly Diverse Subtropical Forest Integrating UAV-Based Photogrammetric Point Cloud and Hyperspectral Data

[1]  Michael A. Lefsky,et al.  Review of studies on tree species classification from remotely sensed data , 2016 .

[2]  M. Cho,et al.  Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment , 2012 .

[3]  Liviu Theodor Ene,et al.  Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data , 2014 .

[4]  Miina Rautiainen,et al.  Application of photon recollision probability in coniferous canopy reflectance simulations , 2005 .

[5]  Moses Azong Cho,et al.  Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system , 2012 .

[6]  D. Lu,et al.  A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon , 2014 .

[7]  Juha Hyyppä,et al.  Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging , 2017, Remote. Sens..

[8]  Clement Atzberger,et al.  Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data , 2018, Remote. Sens..

[9]  Andreas Burkart,et al.  Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance , 2015 .

[10]  Heikki Saari,et al.  Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture , 2013, Remote. Sens..

[11]  Heikki Saari,et al.  Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity , 2018, Remote. Sens..

[12]  Richard Gloaguen,et al.  Classifying Complex Mountainous Forests with L-Band SAR and Landsat Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest , 2014, Remote. Sens..

[13]  Epífitas vasculares de uma área de ecótono entre as Florestas Ombrófilas Densa e Mista, no Parque Estadual do Marumbi, PR , 2012 .

[14]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[15]  R. Mittermeier,et al.  From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest , 2018, Perspectives in Ecology and Conservation.

[16]  Bogdan Zagajewski,et al.  Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images , 2017 .

[17]  S. Popescu,et al.  Classification of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images , 2015, PloS one.

[18]  Y. Shimabukuro,et al.  Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data , 2016 .

[19]  Marcos Benedito Schimalski,et al.  ABORDAGENS PARA CLASSIFICAÇÃO DO ESTÁDIO SUCESSIONAL DA VEGETAÇÃO DO PARQUE NACIONAL DE SÃO JOAQUIM EMPREGANDO IMAGENS LANDSAT-8 E RAPIDEYE , 2017 .

[20]  Eija Honkavaara,et al.  Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows , 2018, Remote. Sens..

[21]  C. Joly,et al.  Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. , 2010, Brazilian journal of biology = Revista brasleira de biologia.

[22]  Michele Dalponte,et al.  Tree Species Classification in Boreal Forests With Hyperspectral Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[23]  D. Roberts,et al.  Spectral and Structural Measures of Northwest Forest Vegetation at Leaf to Landscape Scales , 2004, Ecosystems.

[24]  Ronaldo Viana Soares,et al.  CONSIDERAÇÕES SOBRE A REGENERAÇÃO NATURAL DA Araucaria angustifolia , 2006 .

[25]  D. Roberts,et al.  Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales , 2005 .

[26]  Nikos Koutsias,et al.  Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site , 2008 .

[27]  Heikki Saari,et al.  Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV) , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[28]  G. A. Blackburn,et al.  Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves , 1998 .

[29]  Henning Buddenbaum,et al.  Comparison of Feature Reduction Algorithms for Classifying Tree Species With Hyperspectral Data on Three Central European Test Sites , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Guangchun Luo,et al.  Minimum Noise Fraction versus Principal Component Analysis as a Preprocessing Step for Hyperspectral Imagery Denoising , 2016 .

[31]  Steven E. Franklin,et al.  A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery , 2012 .

[32]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[33]  Lian Pin Koh,et al.  Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in Tropical Areas , 2014 .

[34]  Maria Antonia Brovelli,et al.  Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method , 2008 .

[35]  Eija Honkavaara,et al.  Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level , 2015, Remote. Sens..

[36]  Melissa Maya Mesa Variabilidad en la respuesta espectral de especies forestales en un contexto urbano , 2020 .

[37]  Eija Honkavaara,et al.  Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes , 2017 .

[38]  Juha Hyyppä,et al.  Comparison of Tree Species Classifications at the Individual Tree Level by Combining ALS Data and RGB Images Using Different Algorithms , 2016, Remote. Sens..

[39]  Zhen Zhen,et al.  Trends in Automatic Individual Tree Crown Detection and Delineation - Evolution of LiDAR Data , 2016, Remote. Sens..

[40]  S. Phinn,et al.  Mapping structural parameters and species composition of riparian vegetation using IKONOS and landsat ETM+ data in australian tropical savannahs , 2006 .

[41]  Balázs Deák,et al.  Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery , 2015, Remote. Sens..

[42]  Terry Caelli,et al.  Hyperspectral discrimination of tropical dry forest lianas and trees: Comparative data reduction approaches at the leaf and canopy levels , 2007 .

[43]  Runguo Zang,et al.  Classification of Landscape Types Based on Land Cover, Successional Stages and Plant Functional Groups in a Species-Rich Forest in Hainan Island, China , 2016 .

[44]  Nicholas C. Coops,et al.  Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[45]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[46]  Piero Toscano,et al.  Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture , 2015, Remote. Sens..

[47]  S. Hurlbert Pseudoreplication and the Design of Ecological Field Experiments , 1984 .

[48]  Gregory Asner,et al.  Single-Species Detection With Airborne Imaging Spectroscopy Data: A Comparison of Support Vector Techniques , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[49]  P. Gong,et al.  Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery , 2006 .

[50]  O. Phillips,et al.  Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[51]  Alexander Christian Vibrans,et al.  Inventário florístico florestal de Santa Catarina (IFFSC): aspectos metodológicos e operacionais , 2010 .

[52]  David Kenfack,et al.  An estimate of the number of tropical tree species , 2015, Proceedings of the National Academy of Sciences.

[53]  F. Nex,et al.  UAV for 3D mapping applications: a review , 2014 .

[54]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[55]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[56]  E. Honkavaara,et al.  Geometric Calibration of a Hyperspectral Frame Camera , 2016 .

[57]  S. Franklin,et al.  Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data , 2018 .

[58]  N. Coops,et al.  Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada , 2010 .

[59]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[60]  A. Gitelson,et al.  Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening , 1999 .

[61]  Dar A. Roberts,et al.  Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier , 2012, Remote. Sens..

[62]  Barbara Koch,et al.  Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[63]  Gregory Asner,et al.  Tree Species Discrimination in Tropical Forests Using Airborne Imaging Spectroscopy , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Gregory Asner,et al.  Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data , 2016, Remote. Sens..

[65]  E. LeDrew,et al.  Remote sensing of aquatic coastal ecosystem processes , 2006 .

[66]  J. Metzger,et al.  Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. , 2014, The New phytologist.

[67]  Jean Paul Metzger,et al.  The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation , 2009 .

[68]  Leonhard Blesius,et al.  Tree Species Classification Using Hyperspectral Imagery: A Comparison of Two Classifiers , 2016, Remote. Sens..

[69]  David E. Knapp,et al.  Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy , 2015, PloS one.

[70]  L. Bruzzone,et al.  Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data , 2012 .

[71]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[72]  Eija Honkavaara,et al.  Radiometric block adjustment of hyperspectral image blocks in the Brazilian environment , 2018 .

[73]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[74]  Roberta E. Martin,et al.  Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. , 2008 .

[75]  Onisimo Mutanga,et al.  Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers , 2014 .

[76]  Luciano Vieira Dutra,et al.  Land use/cover classification in the Brazilian Amazon using satellite images. , 2012, Pesquisa Agropecuaria Brasileira.

[77]  Janne Heiskanen,et al.  Classification of Tree Species in a Diverse African Agroforestry Landscape Using Imaging Spectroscopy and Laser Scanning , 2017, Remote. Sens..

[78]  Gregory Asner,et al.  Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data , 2012, Remote. Sens..

[79]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[80]  Xin Shen,et al.  Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data , 2017, Remote. Sens..

[81]  Karen E. Joyce,et al.  Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs , 2014, Remote. Sens..

[82]  Aniruddha Ghosh,et al.  A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[83]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.