Distance-Based Clique Relaxations in Networks: s-Clique and s-Club

The concept of the clique, originally introduced as a model of a cohesive subgroup in the context of social network analysis, is a classical model of a cluster in networks. However, the ideal cohesiveness properties guaranteed by the clique definition put limitations on its applicability to situations where enforcing such properties is unnecessary or even prohibitive. Motivated by practical applications of diverse origins, numerous clique relaxation models, which are obtained by relaxing certain properties of a clique, have been introduced and studied by researchers representing different fields. Distance-based clique relaxations, which replace the requirement on pairwise distances to be equal to 1 in a clique with less restrictive distance bounds, are among the most important such models. This chapter surveys the up-to-date progress made in studying two common distance-based clique relaxation models called s-clique and s-club, as well as the corresponding optimization problems.

[1]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[2]  Christian Komusiewicz,et al.  Parameterized computational complexity of finding small-diameter subgraphs , 2012, Optim. Lett..

[3]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[4]  R. Sampson,et al.  Community Structure and Crime: Testing Social-Disorganization Theory , 1989, American Journal of Sociology.

[5]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[6]  Gilbert Laporte,et al.  An exact algorithm for the maximum k-club problem in an undirected graph , 1999, Eur. J. Oper. Res..

[7]  Gilbert Laporte,et al.  Heuristics for finding k-clubs in an undirected graph , 2000, Comput. Oper. Res..

[8]  R. Rothenberg,et al.  Personal risk taking and the spread of disease: beyond core groups. , 1996, The Journal of infectious diseases.

[9]  Christian Komusiewicz,et al.  On structural parameterizations for the 2-club problem , 2013, Discret. Appl. Math..

[10]  Daniel Berleant,et al.  From paragraph networks to document networks , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[11]  J. Rothberg,et al.  Gaining confidence in high-throughput protein interaction networks , 2004, Nature Biotechnology.

[12]  Sergio Rajsbaum,et al.  LATIN 2002: Theoretical Informatics , 2002, Lecture Notes in Computer Science.

[13]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[14]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[15]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[18]  Alexander Veremyev,et al.  Identifying large robust network clusters via new compact formulations of maximum k-club problems , 2012, Eur. J. Oper. Res..

[19]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[20]  Nicole Adler,et al.  Competition in a deregulated air transportation market , 2001, Eur. J. Oper. Res..

[21]  Donghyun Kim,et al.  Constructing Minimum Connected Dominating Sets with Bounded Diameters in Wireless Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[22]  Christian Komusiewicz,et al.  Parameterized Algorithmics and Computational Experiments for Finding 2-Clubs , 2012, J. Graph Algorithms Appl..

[23]  Michel Gendreau,et al.  Solving the maximum clique problem using a tabu search approach , 1993, Ann. Oper. Res..

[24]  David Zuckerman Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..

[25]  Casper Goffman,et al.  And What is Your Erdös Number , 1969 .

[26]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[27]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[28]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[29]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[30]  David L. Hicks,et al.  Notice of Violation of IEEE Publication PrinciplesDetecting Critical Regions in Covert Networks: A Case Study of 9/11 Terrorists Network , 2007, The Second International Conference on Availability, Reliability and Security (ARES'07).

[31]  Sergiy Butenko,et al.  On connected dominating sets of restricted diameter , 2014, Eur. J. Oper. Res..

[32]  Wilbert E. Wilhelm,et al.  Clique-detection models in computational biochemistry and genomics , 2006, Eur. J. Oper. Res..

[33]  Bojan Mohar,et al.  On approximating the maximum diameter ratio of graphs , 2002, Discret. Math..

[34]  John Scott Social Network Analysis , 1988 .

[35]  Yuichi Asahiro,et al.  Approximating Maximum Diameter-Bounded Subgraphs , 2010, LATIN.

[36]  Elena Marchiori,et al.  Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics , 2007, Lecture Notes in Computer Science.

[37]  Hebert Pérez-Rosés,et al.  The Maximum Degree & Diameter-Bounded Subgraph and its Applications , 2012, J. Math. Model. Algorithms.

[38]  R. Alba A graph‐theoretic definition of a sociometric clique† , 1973 .

[39]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[40]  Srinivas Pasupuleti,et al.  Detection of Protein Complexes in Protein Interaction Networks Using n-Clubs , 2008, EvoBIO.

[41]  Foad Mahdavi Pajouh Polyhedral combinatorics, complexity & algorithms for k-clubs in graphs , 2012 .

[42]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[43]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[44]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[45]  R. Luce,et al.  A method of matrix analysis of group structure , 1949, Psychometrika.

[46]  Alexander Schäfer,et al.  Exact algorithms for s-club finding and related problems , 2009 .

[47]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[48]  Christian Komusiewicz,et al.  On Structural Parameterizations for the 2-Club Problem , 2013, SOFSEM.

[49]  Loren G. Terveen,et al.  Constructing, organizing, and visualizing collections of topically related Web resources , 1999, TCHI.

[50]  Maw-Shang Chang,et al.  Finding large $$k$$-clubs in undirected graphs , 2013, Computing.

[51]  Béla Bollobás,et al.  Random Graphs , 1985 .

[52]  Sergiy Butenko,et al.  Novel Approaches for Analyzing Biological Networks , 2005, J. Comb. Optim..

[53]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[54]  Panos M. Pardalos,et al.  Handbook of Optimization in Telecommunications , 2006 .

[55]  Sergiy Butenko,et al.  Algorithms for the maximum k-club problem in graphs , 2013, J. Comb. Optim..

[56]  Gang Yu,et al.  AIRLINE NETWORK DESIGN AND HUB LOCATION PROBLEMS , 1996 .

[57]  John Scott What is social network analysis , 2010 .

[58]  Sergiy Butenko,et al.  On clique relaxation models in network analysis , 2013, Eur. J. Oper. Res..

[59]  Maria Teresa Almeida,et al.  Integer models and upper bounds for the 3-club problem , 2012, Networks.

[60]  R. J. Mokken,et al.  Cliques, clubs and clans , 1979 .

[61]  Maria Teresa Almeida,et al.  Upper bounds and heuristics for the 2-club problem , 2011, Eur. J. Oper. Res..

[62]  Sergiy Butenko,et al.  Graph Domination, Coloring and Cliques in Telecommunications , 2006, Handbook of Optimization in Telecommunications.

[63]  R. Luce,et al.  Connectivity and generalized cliques in sociometric group structure , 1950, Psychometrika.

[64]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[65]  Sandra Sudarsky,et al.  Massive Quasi-Clique Detection , 2002, LATIN.

[66]  Michael A. Langston,et al.  Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings , 2006, IWPEC.

[67]  Balabhaskar Balasundaram,et al.  On inclusionwise maximal and maximum cardinality k-clubs in graphs , 2012, Discret. Optim..