A Fast Algorithm for Deconvolution and Poisson Noise Removal

Poisson noise removal problems have attracted much attention in recent years. The main aim of this paper is to study and propose an alternating minimization algorithm for Poisson noise removal with nonnegative constraint. The algorithm minimizes the sum of a Kullback-Leibler divergence term and a total variation term. We derive the algorithm by utilizing the quadratic penalty function technique. Moreover, the convergence of the proposed algorithm is also established under very mild conditions. Numerical comparisons between our approach and several state-of-the-art algorithms are presented to demonstrate the efficiency of our proposed algorithm.

[1]  Michael K. Ng,et al.  Efficient Total Variation Minimization Methods for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[2]  J. M. Ollinger,et al.  Positron Emission Tomography , 2018, Handbook of Small Animal Imaging.

[3]  Raymond H. Chan,et al.  Primal-dual algorithms for total variation based image restoration under Poisson noise , 2016 .

[4]  R. Chan,et al.  Minimization and parameter estimation for seminorm regularization models with I-divergence constraints , 2013 .

[5]  Fionn Murtagh,et al.  Deconvolution in Astronomy: A Review , 2002 .

[6]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[9]  Martin Burger,et al.  Primal and Dual Bregman Methods with Application to Optical Nanoscopy , 2011, International Journal of Computer Vision.

[10]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[11]  M. Ng,et al.  Alternating minimization method for total variation based wavelet shrinkage model , 2010 .

[12]  Xiongjun Zhang,et al.  Adaptive correction procedure for TVL1 image deblurring under impulse noise , 2016 .

[13]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[14]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[15]  Gengsheng L. Zeng,et al.  Total variation regulated EM algorithm [SPECT reconstruction] , 1999 .

[16]  M. Bertero,et al.  Image deblurring with Poisson data: from cells to galaxies , 2009 .

[17]  Johnathan M. Bardsley,et al.  An Iterative Method for Edge-Preserving MAP Estimation When Data-Noise Is Poisson , 2010, SIAM J. Sci. Comput..

[18]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[19]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[20]  W. Wamsteker,et al.  Least-squares methods with Poissonian noise: Analysis and comparison with the Richardson-Lucy algorithm , 2005 .

[21]  P. Valk,et al.  Positon emission tomography. Basic sciences , 2006 .

[22]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[23]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[24]  F. Lucka Fast Gibbs sampling for high-dimensional Bayesian inversion , 2016, 1602.08595.

[25]  Gabriele Steidl,et al.  First order algorithms in variational image processing , 2014, ArXiv.

[26]  Josiane Zerubia,et al.  Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution , 2006, Microscopy research and technique.

[27]  Thomas J. Asaki,et al.  A Variational Approach to Reconstructing Images Corrupted by Poisson Noise , 2007, Journal of Mathematical Imaging and Vision.

[28]  Tieyong Zeng,et al.  Two-Step Approach for the Restoration of Images Corrupted by Multiplicative Noise , 2013, SIAM J. Sci. Comput..

[29]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[30]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[31]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[32]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[33]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[35]  Michael K. Ng Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scientific Computation) , 2004 .

[36]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[37]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[38]  Bahram Javidi,et al.  Automatic regularization parameter selection by generalized cross-validation for total variational Poisson noise removal. , 2017, Applied optics.

[39]  Rafael Molina,et al.  On the Hierarchical Bayesian Approach to Image Restoration: Applications to Astronomical Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[41]  Michael K. Ng,et al.  A Fast l1-TV Algorithm for Image Restoration , 2009, SIAM J. Sci. Comput..

[42]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[43]  Jianing Shi,et al.  A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008, SIAM J. Imaging Sci..

[44]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[45]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[46]  Grant T. Gullberg,et al.  Total variation regulated EM algorithm , 1998, 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255).

[47]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[48]  Michael K. Ng,et al.  A Fast Total Variation Minimization Method for Image Restoration , 2008, Multiscale Model. Simul..

[49]  M. Ng,et al.  EFFICIENT BOX-CONSTRAINED TV-TYPE-l^1 ALGORITHMS FOR RESTORING IMAGES WITH IMPULSE NOISE , 2013 .

[50]  F. Browder,et al.  The solution by iteration of nonlinear functional equations in Banach spaces , 1966 .