PREDICTIONS OF QUASAR CLUSTERING: REDSHIFT, LUMINOSITY, AND SELECTION DEPENDENCE

We show that current clustering observations of quasars and luminous active galactic nuclei (AGNs) can be explained by a merger model augmented by feedback from outflows. Using numerical simulations large enough to study clustering out to 25 comoving h−1 Mpc, we calculate correlation functions, biases, and correlation lengths as a function of AGN redshift and optical and X-ray luminosity. At optical wavelengths, our results match a wide range of current observations and generate predictions for future data sets. We reproduce the weak luminosity dependence of clustering over the currently well-measured range and predict a much stronger dependence at higher luminosities. The increase in the amplitude of binary quasar clustering observed in the Sloan Digital Sky Survey (SDSS) is also reproduced and is predicted to occur at higher redshift, an effect that is due to the one-halo term in the correlation function. On the other hand, our results do not match the rapid evolution of the correlation length observed in the SDSS at z ≃ 3, a discrepancy that is at least partially due to differences in the scales probed by our simulation versus this survey. In fact, we show that changing the distances sampled from our simulations can produce changes as large as 40% in the fitted correlation lengths. Finally, in the X-ray, our simulations produce correlation lengths similar to that observed in the Chandra Deep Field (CDF) North, but not the significantly larger correlation length observed in the CDF-South.

[1]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. III. The MBH-σ* Relation in the Last Six Billion Years , 2008, 0804.0235.

[2]  F. E. Bauer,et al.  Luminosity-dependent X-Ray Active Galactic Nucleus Clustering? , 2008 .

[3]  S. Virani,et al.  Clustering of Intermediate-Luminosity X-Ray-Selected Active Galactic Nuclei at z ~ 3 , 2007, 0711.3913.

[4]  D. Shupe,et al.  High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function , 2007, 0711.0211.

[5]  R. Thacker,et al.  Measuring AGN Feedback with the Sunyaev-Zel’dovich Effect , 2007, 0709.0952.

[6]  J. Ostriker,et al.  Dynamics of Rotating Accretion Flows Irradiated by a Quasar , 2007, 0708.4037.

[7]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[8]  T. D. Matteo,et al.  Direct Cosmological Simulations of the Growth of Black Holes and Galaxies , 2007, 0705.2269.

[9]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[10]  M. Vestergaard,et al.  Outflows and the Physical Properties of Quasars , 2007, 0705.1546.

[11]  A. Szalay,et al.  Clustering of High-Redshift (z ≥ 2.9) Quasars from the Sloan Digital Sky Survey , 2007, astro-ph/0702214.

[12]  W. Brandt,et al.  XMM-Newton and Chandra Spectroscopy of the Variable High-Energy Absorption of PG 1115+080: Refined Outflow Constraints , 2007, The Astronomical Journal.

[13]  Takamitsu Miyaji,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. V. Angular Clustering of the X-Ray Point Sources , 2006, astro-ph/0612369.

[14]  A. Myers,et al.  Clustering Analyses of 300,000 Photometrically Classified Quasars. I. Luminosity and Redshift Evolution in Quasar Bias , 2006, astro-ph/0612190.

[15]  A. Myers,et al.  Clustering Analyses of 300,000 Photometrically Classified Quasars. II. The Excess on Very Small Scales , 2006, astro-ph/0612191.

[16]  Princeton,et al.  The Co-Formation of Spheroids and Quasars Traced in their Clustering , 2006, astro-ph/0611792.

[17]  P. Hopkins,et al.  The Kinematic Structure of Merger Remnants , 2006, astro-ph/0607446.

[18]  P. Norberg,et al.  Luminosity‐ and redshift‐dependent quasar clustering , 2006, astro-ph/0607348.

[19]  R. Thacker,et al.  Quasars: What Turns Them Off? , 2006, astro-ph/0606214.

[20]  R. Davé,et al.  Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi‐analytic model and cosmological SPH simulations , 2006, astro-ph/0605750.

[21]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[22]  P. Hopkins,et al.  Fueling Low-Level AGN Activity through Stochastic Accretion of Cold Gas , 2006, astro-ph/0603180.

[23]  P. Hopkins,et al.  The Relation between Quasar and Merging Galaxy Luminosity Functions and the Merger-driven Star Formation History of the Universe , 2006, astro-ph/0602290.

[24]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[25]  R. Mushotzky,et al.  Spatial Correlation Function of the Chandra-selected Active Galactic Nuclei , 2006, astro-ph/0601634.

[26]  G. Richards,et al.  The Small-Scale Environment of Quasars , 2006, astro-ph/0601522.

[27]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[28]  A. Dekel,et al.  Modelling the galaxy bimodality: shutdown above a critical halo mass , 2006, astro-ph/0601295.

[29]  R. Thacker,et al.  A parallel adaptive P3M code with hierarchical particle reordering , 2005, Comput. Phys. Commun..

[30]  R. Bouwens,et al.  AGN Feedback Causes Downsizing , 2005, astro-ph/0511116.

[31]  P. Hopkins,et al.  The Fundamental Scaling Relations of Elliptical Galaxies , 2005, astro-ph/0511053.

[32]  Alexander G. Gray,et al.  First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.

[33]  F. Castander,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Survey Design and Deep Public UBVRIz' Images and Catalogs of the Extended Hubble Deep Field-South , 2005, astro-ph/0509202.

[34]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[35]  P. Hopkins,et al.  The Luminosity Dependence of Quasar Clustering , 2005, astro-ph/0507361.

[36]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[37]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[38]  P. Hopkins,et al.  The Evolution of the MBH-σ Relation , 2005, astro-ph/0506038.

[39]  C. Steidel,et al.  Constraints from Galaxy-AGN Clustering on the Correlation between Galaxy and Black Hole Mass at Redshift 2 ≲ z ≲ 3 , 2005, astro-ph/0505546.

[40]  J. Brinkmann,et al.  Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales , 2005, astro-ph/0504535.

[41]  Mullard Space Science Laboratory,et al.  The 2dF QSO Redshift Survey– XV. Correlation analysis of redshift‐space distortions , 2005, astro-ph/0504438.

[42]  A. Myers,et al.  The 2dF-SDSS LRG and QSO Survey: The z<2.1 Quasar Luminosity Function from 5645 Quasars to g=21.85 , 2005, astro-ph/0504300.

[43]  P. Hopkins,et al.  Luminosity-dependent Quasar Lifetimes: A New Interpretation of the Quasar Luminosity Function , 2005, astro-ph/0504252.

[44]  P. Hopkins,et al.  Luminosity-dependent Quasar Lifetimes: Reconciling the Optical and X-Ray Quasar Luminosity Functions , 2005, astro-ph/0504253.

[45]  P. Hopkins,et al.  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[46]  P. Hopkins,et al.  X-Ray Emission from Hot Gas in Galaxy Mergers , 2005, astro-ph/0504156.

[47]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[48]  V. Springel,et al.  Massive Galaxies and Extremely Red Objects at z = 1-3 in Cosmological Hydrodynamic Simulations: Near-Infrared Properties , 2005, astro-ph/0502001.

[49]  J. Brinkmann,et al.  Active Galactic Nuclei in the Sloan Digital Sky Survey. II. Emission-Line Luminosity Function , 2005, astro-ph/0501042.

[50]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[51]  I. Georgantopoulos,et al.  The XMM-Newton/2dF Survey — VI. Clustering and bias of the soft X-ray point sources , 2004, astro-ph/0409670.

[52]  Porto,et al.  The 2dF QSO Redshift Survey - XIV. Structure and evolution from the two-point correlation function , 2004, astro-ph/0409314.

[53]  A. Barger Supermassive Black Holes in the Distant Universe , 2004 .

[54]  M. Magliocchetti,et al.  Cosmic evolution of quasar clustering: implications for the host haloes , 2004, astro-ph/0406036.

[55]  R. Mushotzky How are AGN Found , 2004, astro-ph/0405144.

[56]  A. Georgakakis,et al.  The Clustering of XMM-Newton Hard X-Ray Sources , 2004, astro-ph/0404185.

[57]  A. Loeb,et al.  Calibrating the Galaxy Halo-Black Hole Relation Based on the Clustering of Quasars , 2004, astro-ph/0403714.

[58]  E. Scannapieco,et al.  Quasar Feedback: The Missing Link in Structure Formation , 2004, astro-ph/0401087.

[59]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[60]  Takamitsu Miyaji,et al.  Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background , 2003, astro-ph/0308140.

[61]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[62]  S. Borgani,et al.  Tracing the Large-Scale Structure in the Chandra Deep Field South , 2003, astro-ph/0304177.

[63]  A. Loeb,et al.  Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-Ray Luminosity Functions of Quasars , 2003, astro-ph/0304156.

[64]  L. Wisotzki,et al.  The evolution of faint AGN between z ' 1 and z ' 5 from the COMBO-17 survey , 2003, astro-ph/0304072.

[65]  M. Magliocchetti,et al.  The halo distribution of 2dF galaxies , 2003, astro-ph/0304003.

[66]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[67]  H. Mo,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[68]  A. Loeb,et al.  A Physical Model for the Luminosity Function of High-Redshift Quasars , 2002, astro-ph/0206154.

[69]  R. Barkana,et al.  An Analytical Approach to Inhomogeneous Structure Formation , 2002, astro-ph/0205276.

[70]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[71]  C. Baugh,et al.  A comparison of gas dynamics in smooth particle hydrodynamics and semi-analytic models of galaxy formation , 2002, astro-ph/0202485.

[72]  B. Nath,et al.  Heating of the intracluster medium by quasar outflows , 2002, astro-ph/0202201.

[73]  G. Lewis,et al.  Physical Implications of the X-ray Properties of Galaxy Groups and Clusters , 2001, astro-ph/0109329.

[74]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[75]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[76]  A. Loeb,et al.  Intergalactic Magnetic Fields from Quasar Outflows , 2001, astro-ph/0102076.

[77]  F. Brighenti,et al.  Entropy Evolution in Galaxy Groups and Clusters: a Comparison of External and Internal Heating , 2001, astro-ph/0101517.

[78]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[79]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[80]  G. Yepes,et al.  On the supernova heating of the intergalactic medium , 2000, astro-ph/0004333.

[81]  C. Norman,et al.  Detection of the Entropy of the Intergalactic Medium: Accretion Shocks in Clusters, Adiabatic Cores in Groups , 1999, astro-ph/9907299.

[82]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[83]  J. Silk,et al.  The Sunyaev-Zeldovich Effect by Cocoons of Radio Galaxies , 1999, astro-ph/9902069.

[84]  Y. Jing,et al.  Accurate Determination of the Lagrangian Bias for the Dark Matter Halos , 1999, astro-ph/9901138.

[85]  G. Lake,et al.  N-Point Correlations in CDM and ΩCDM Simulations , 1998, astro-ph/9810190.

[86]  S. Matarrese,et al.  Excursion set approach to the clustering of dark matter haloes in Lagrangian space , 1998, astro-ph/9801290.

[87]  R. Scoccimarro Transients from initial conditions: a perturbative analysis , 1997, astro-ph/9711187.

[88]  S. Cristiani,et al.  Quasar Clustering: Evidence for an Increase with Redshift and Implications for the Nature of Active Galactic Nuclei , 1997, astro-ph/9711048.

[89]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[90]  T. Kundić The Quasar-Quasar Correlation Function in the Palomar Transit Grism Survey , 1997 .

[91]  S. Croom,et al.  QSO clustering - III. Clustering in the Large Bright Quasar Survey and evolution of the QSO correlation function , 1996 .

[92]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[93]  H. Couchman,et al.  Mesh-refined P3M - A fast adaptive N-body algorithm , 1991 .

[94]  D. Cioffi,et al.  Overpressured cocoons in extragalactic radio sources , 1989 .

[95]  A. Iovino,et al.  The Clustering of Quasars , 1988 .

[96]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[97]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[98]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[99]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[100]  V. Springel,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .

[101]  L. Ferrarese,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj BEYOND THE BULGE: A FUNDAMENTAL RELATION BETWEEN SUPERMASSIVE BLACK HOLES AND DARK MATTER HALOS , 2002 .

[102]  L. Moustakas,et al.  APJ LETTERS, IN PRESS Preprint typeset using LATEX style emulateapj v. 5/14/03 GALAXY CLUSTER CORRELATION FUNCTION TO Z ∼ 1.5 IN THE IRAC SHALLOW CLUSTER SURVEY , 2022 .