Measuring the Magnetic Field on the Classical T Tauri Star BP Tauri

We examine several theories that describe how stellar magnetic fields on classical T Tauri stars (CTTSs) interact with their surrounding accretion disks. We demonstrate that these theories require magnetic field strengths ranging from a few hundred to several thousand gauss, depending on which model is used and more importantly on the properties of individual systems. For example, the CTTS BP Tau is predicted to have a relatively strong magnetic field (1.4-4.1 kG), which should be detectable. We present infrared (IR) and optical echelle spectra of BP Tau and several reference stars of similar spectral class. Using detailed spectrum synthesis and the latest model atmospheres, we fitted 12 absorption features in the optical spectrum, including the strong titanium oxide (TiO) band head at 7055 Å. For BP Tau we determine key stellar parameters: effective temperature (Teff=4055 ± 112 K), gravity (log g=3.67 ± 0.50), metallicity ([M/H]=0.18 ± 0.11), projected rotational velocity (v sin i=10.2 ± 1.8 km s-1), and optical veiling (r=0.00-0.15). A similar analysis of 61 Cyg B (K7 V) is used to validate the methodology. We then use the IR spectra to look for Zeeman broadening, which has a more pronounced effect at longer wavelengths. A Zeeman sensitive Ti I line at 2.2233 μm appears significantly broadened in BP Tau, relative to several rotationally broadened standard stars. The observed line is also significantly broader than predictions based on our optical analysis. Interpreting this excess broadening as Zeeman splitting of the Ti I line, we fitted the spectrum and find a distribution of field strengths whose surface averaged mean is B̄=2.6 ± 0.3 kG. We did not use the Zeeman sensitive Fe I line at 8468.4 Å when determining stellar or magnetic parameters for BP Tau, so this line provides a test of our results. The observed line profile is indeed broader than the nonmagnetic prediction, but the 8468.4 Å line gives a magnetic flux lower than what was obtained in the IR, perhaps indicating that strong fields are concentrated into cool spots. Finally, we investigate an ad hoc model in which the IR line is assumed to form in the accretion disk itself. We discuss several reasons why the magnetic model is preferred, but the disk atmosphere example illustrates that our magnetic field measurement must still be tested using several IR lines with a range of Zeeman sensitivities.

[1]  J. Valenti,et al.  Spectral Synthesis of TiO Lines , 1998 .

[2]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[3]  J. Valenti,et al.  Spectropolarimetry of Magnetospheric Accretion on the Classical T Tauri Star BP Tauri , 1998 .

[4]  Andrew Collier Cameron,et al.  Spectropolarimetric observations of active stars , 1997 .

[5]  A. Hatzes,et al.  The Classical T Tauri Star Sz 68: Doppler Imaging and Evidence for Magnetospheric Accretion , 1997 .

[6]  P. Safier A Critique of Current Magnetic-Accretion Models for Classical T Tauri Stars , 1997, astro-ph/9709158.

[7]  L. Wallace,et al.  Medium-Resolution Spectra of Normal Stars in the K Band , 1997 .

[8]  A. I. Gómez de Castro,et al.  Accretion and UV Variability in BP Tauri , 1997 .

[9]  E. Chiang,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[10]  C. McKee,et al.  Star Formation in Cold, Spherical, Magnetized Molecular Clouds , 1997, astro-ph/9703144.

[11]  M. Meyer,et al.  Intrinsic near-infrared excesses of T tauri stars: Understanding the classical T tauri star locus , 1997 .

[12]  E. Thommes,et al.  Detection of periods for T Tauri stars. , 1996 .

[13]  D. Padgett Atmospheric Parameters and Iron Abundances of Low-Mass Pre-Main-Sequence Stars in Nearby Star Formation Regions , 1996 .

[14]  C. Lada,et al.  Near-Infrared Spectra and the Evolutionary Status of Young Stellar Objects: Results of a 1.1-2.4 (??) Survey , 1996 .

[15]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[16]  S. Baliunas,et al.  A Relationship between Mean Rotation Period in Lower Main-Sequence Stars and Its Observed Range , 1996 .

[17]  L. Hartmann,et al.  A Magnetic Accretion Disk Model for the Infrared Excesses of T Tauri Stars , 1996 .

[18]  W. Herbst,et al.  Rotation Periods of Stars in the Orion Nebula Cluster: The Bimodal Distribution , 1996 .

[19]  S. Saar Recent Measurements of Stellar Magnetic Fields , 1996 .

[20]  J. Valenti,et al.  Detection of Strong Magnetic Fields on M Dwarfs , 1995 .

[21]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[22]  A. Hatzes Doppler Imaging of the Cool SPOT Distribution on the Weak T Tauri Star V410 Tauri , 1995 .

[23]  M. Meyer,et al.  An Infrared Spectroscopic Survey of the rho Ophiuchi Young Stellar Cluster: Masses and Ages from the H-R Diagram , 1995 .

[24]  G. Basri,et al.  The Line Profile Variability of SU Aurigae , 1995 .

[25]  E. Ostriker,et al.  Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone , 1995 .

[26]  Phillip J. MacQueen,et al.  THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .

[27]  J. Valenti,et al.  Infrared Zeeman Analysis of epsilon Eridani , 1995 .

[28]  E. Zweibel,et al.  Alfven Waves in Interstellar Gasdynamics , 1995 .

[29]  P. Hauschildt M (sub)Dwarf Model Atmospheres: The Next Generation , 1995 .

[30]  Nuria Calvet,et al.  Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation , 1994 .

[31]  Italo Mazzitelli,et al.  New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convecti on model , 1994 .

[32]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[33]  J. Valenti,et al.  T Tauri stars in blue , 1993 .

[34]  Alan T. Tokunaga,et al.  CSHELL: a high spectral resolution 1-5-μm cryogenic echelle spectrograph for the IRTF , 1993, Defense, Security, and Sensing.

[35]  K. M. Merrill,et al.  Angular Momentum Regulation in Low-Mass Young Stars Surrounded by Accretion Disks , 1993 .

[36]  W. Herbst,et al.  Rotation Periods of T Tauri Stars in the Orion Nebula Cluster: A Bimodal Frequency Distribution , 1992 .

[37]  R. Pudritz,et al.  Hydromagnetic disk winds in young stellar objects and active galactic nuclei , 1992 .

[38]  G. Marcy,et al.  Limits on the Magnetic Flux of a Pre-Main Sequence Star , 1992 .

[39]  L. Hartmann,et al.  Optical excess emission in T Tauri stars , 1991 .

[40]  E. Feigelson,et al.  Milliarcsecond radio structure of weak-lined T Tauri stars , 1991 .

[41]  N. Calvet,et al.  Irradiation of Accretion Disks around Young Objects. I. Near-Infrared CO Bands , 1991 .

[42]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[43]  W. Herbst,et al.  The Ultraviolet and Visible Light Variability of BP Tauri: Possible Clues for the Origin of T Tauri Star Activity , 1990 .

[44]  G. Basri,et al.  Hamilton echelle spectra of young stars. I: Optical veiling , 1990 .

[45]  Donald N. B. Hall,et al.  Design for a 1--5-um cryogenic echelle spectrograph for the NASA IRTF , 1990, Astronomical Telescopes and Instrumentation.

[46]  J. Bouvier Rotation in T Tauri Stars. II. Clues for Magnetic Activity , 1990 .

[47]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[48]  S. Baliunas,et al.  Stellar Activity and Brightness Variations: A Glimpse at the Sun's History , 1990, Science.

[49]  M. Camenzind Magnetized Disk-Winds and the Origin of Bipolar Outflows. , 1990 .

[50]  R. Mundt,et al.  T Tauri stars , 1989 .

[51]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[52]  L. Hartmann,et al.  Additional measurements of pre-main-sequence stellar rotation , 1989 .

[53]  Roger A. Bell,et al.  The effective temperatures and colours of G and K stars , 1989 .

[54]  C. Bertout T Tauri Stars: Wild as Dust , 1989 .

[55]  H. Ögelman,et al.  Timing neutron stars , 1989 .

[56]  C. Bertout,et al.  Accretion Disks around T Tauri Stars , 1988 .

[57]  S. Saar Improved Methods for the Measurement and Analysis of Stellar Magnetic Fields , 1988 .

[58]  R. Johnstone,et al.  Follow-up Zeeman observations of the T Tauri Star RU Lup , 1987 .

[59]  F. Vrba,et al.  Further evidence for rotational modulation of the light from T Tauri stars , 1986 .

[60]  R. Johnstone,et al.  A search for magnetic fields in the T Tauri stars GW Ori, CoD-34 7151, and RU Lup , 1986 .

[61]  N. Kylafis,et al.  Plasma penetration into magnetospheres : Mediterranean School on Plasma Astrophysics, Colymbari (Chania), Crete, Greece, September 23-October 4, 1985 , 1986 .

[62]  J. Linsky,et al.  The photospheric magnetic field of the dM3.5e flare star AD Leonis , 1985 .

[63]  J. Landstreet,et al.  A search for weak longitudinal magnetic fields on late-type stars , 1981 .

[64]  S. Vogel,et al.  Rotational velocities of pre-main-sequence stars. , 1981 .

[65]  Jr. Robinson Magnetic field measurements on stellar sources - A new method , 1980 .

[66]  Martin G. Cohen,et al.  Observational studies of pre-main-sequence evolution. , 1979 .

[67]  P. Ghosh,et al.  Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources. , 1979 .

[68]  P. Ghosh,et al.  Accretion by rotating magnetic neutron stars. II. Radial and vertical structure of the transition zone in disk accretion. , 1979 .

[69]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[70]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[71]  A. Unsöld,et al.  Physik der Sternatmosphären , 1938 .