Presynaptic Inhibition Modulates Spillover, Creating Distinct Dynamic Response Ranges of Sensory Output

[1]  Erika D Eggers,et al.  GABAA, GABAC and glycine receptor‐mediated inhibition differentially affects light‐evoked signalling from mouse retinal rod bipolar cells , 2006, The Journal of physiology.

[2]  C. Jahr,et al.  Multivesicular Release at Schaffer Collateral–CA1 Hippocampal Synapses , 2006, The Journal of Neuroscience.

[3]  Gautam B. Awatramani,et al.  Modulation of Transmitter Release by Presynaptic Resting Potential and Background Calcium Levels , 2005, Neuron.

[4]  M. McCall,et al.  Stimulus size and intensity alter fundamental receptive-field properties of mouse retinal ganglion cells in vivo , 2005, Visual Neuroscience.

[5]  Botir T. Sagdullaev,et al.  GABAC receptor-mediated inhibition in the retina , 2004, Vision Research.

[6]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[7]  N. Vardi,et al.  Coordinated multivesicular release at a mammalian ribbon synapse , 2004, Nature Neuroscience.

[8]  D. Dacey,et al.  The Classical Receptive Field Surround of Primate Parasol Ganglion Cells Is Mediated Primarily by a Non-GABAergic Pathway , 2004, The Journal of Neuroscience.

[9]  A. Macdermott,et al.  Presynaptic ionotropic receptors and control of transmitter release , 2004, Nature Reviews Neuroscience.

[10]  R. Dacheux,et al.  Two neuropharmacological types of rabbit ON-alpha ganglion cells express GABAC receptors , 2003, Visual Neuroscience.

[11]  J. B. Demb,et al.  Different Circuits for ON and OFF Retinal Ganglion Cells Cause Different Contrast Sensitivities , 2003, The Journal of Neuroscience.

[12]  Wenzhi Sun,et al.  Large‐scale morphological survey of mouse retinal ganglion cells , 2002, The Journal of comparative neurology.

[13]  P. Lukasiewicz,et al.  Elimination of the ρ1 Subunit Abolishes GABACReceptor Expression and Alters Visual Processing in the Mouse Retina , 2002, The Journal of Neuroscience.

[14]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[15]  M. Scanziani,et al.  Cooperation between independent hippocampal synapses is controlled by glutamate uptake , 2002, Nature Neuroscience.

[16]  J. Diamond,et al.  Synaptically Released Glutamate Activates Extrasynaptic NMDA Receptors on Cells in the Ganglion Cell Layer of Rat Retina , 2002, The Journal of Neuroscience.

[17]  M. Tachibana,et al.  Modulation of excitatory synaptic transmission by GABA(C) receptor-mediated feedback in the mouse inner retina. , 2001, Journal of neurophysiology.

[18]  J. Diamond Neuronal Glutamate Transporters Limit Activation of NMDA Receptors by Neurotransmitter Spillover on CA1 Pyramidal Cells , 2001, The Journal of Neuroscience.

[19]  C. Jahr,et al.  Multivesicular Release at Climbing Fiber-Purkinje Cell Synapses , 2001, Neuron.

[20]  E. Cohen,et al.  Light-evoked excitatory synaptic currents of X-type retinal ganglion cells. , 2000, Journal of neurophysiology.

[21]  R. Wong,et al.  Distinct Ionotropic GABA Receptors Mediate Presynaptic and Postsynaptic Inhibition in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[22]  Matthew H. Higgs,et al.  Glutamate Uptake Limits Synaptic Excitation of Retinal Ganglion Cells , 1999, The Journal of Neuroscience.

[23]  M. Tachibana,et al.  Excitatory Synaptic Transmission in the Inner Retina: Paired Recordings of Bipolar Cells and Neurons of the Ganglion Cell Layer , 1998, The Journal of Neuroscience.

[24]  Alain Marty,et al.  Multivesicular Release at Single Functional Synaptic Sites in Cerebellar Stellate and Basket Cells , 1998, The Journal of Neuroscience.

[25]  F. Werblin,et al.  Response to Change Is Facilitated by a Three-Neuron Disinhibitory Pathway in the Tiger Salamander Retina , 1998, The Journal of Neuroscience.

[26]  D. Kullmann,et al.  Extrasynaptic glutamate spillover in the hippocampus: evidence and implications , 1998, Trends in Neurosciences.

[27]  M. Slaughter,et al.  Serial inhibitory synapses in retina , 1997, Visual Neuroscience.

[28]  H. Spekreijse,et al.  Horizontal cells feed back to cones by shifting the cone calcium-current activation range , 1996, Vision Research.

[29]  R. Miledi,et al.  Design and in vitro pharmacology of a selective gamma-aminobutyric acidC receptor antagonist. , 1996, Molecular pharmacology.

[30]  W. G. Owen,et al.  Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander. , 1996, Journal of neurophysiology.

[31]  H. Wässle,et al.  Immunocytochemical Localization of the GABACReceptor ρ Subunits in the Mammalian Retina , 1996, The Journal of Neuroscience.

[32]  M. Slaughter,et al.  Preferential suppression of the ON pathway by GABAC receptors in the amphibian retina. , 1995, Journal of neurophysiology.

[33]  H. Wässle,et al.  Expression of GABA Receptor ρ1 and ρ2 Subunits in the Retina and Brain of the Rat , 1995 .

[34]  D. Copenhagen,et al.  Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells. , 1995, The Journal of physiology.

[35]  P. Lukasiewicz,et al.  Evidence for glycine modulation of excitatory synaptic inputs to retinal ganglion cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  D. Copenhagen,et al.  The contribution of NMDA and Non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells , 1993, Neuron.

[37]  J. Robson,et al.  Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance , 1992, Visual Neuroscience.

[38]  G. Westbrook,et al.  The time course of glutamate in the synaptic cleft. , 1992, Science.

[39]  J. Watkins,et al.  Agonists and antagonists for excitatory amino acid receptors , 1987, Trends in Neurosciences.

[40]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[41]  H. Wässle,et al.  Morphological identification of on- and off-centre brisk transient (Y) cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[42]  F. Werblin,et al.  The response properties of the steady antagonistic surround in the mudpuppy retina. , 1978, The Journal of physiology.

[43]  Teruya Ohtsuka,et al.  Effects of aspartate and glutamate on the bipolar cells in the carp retina , 1975, Vision Research.

[44]  W. Levick,et al.  Properties of sustained and transient ganglion cells in the cat retina , 1973, The Journal of physiology.

[45]  S. W. Kuffler,et al.  Presynaptic inhibition at the crayfish neuromuscular junction , 1961, The Journal of physiology.

[46]  D. Hubel Tungsten Microelectrode for Recording from Single Units. , 1957, Science.

[47]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.