Point-defect production in arsenic-doped silicon studied with variable-energy positrons

[1]  G. Aers,et al.  Defect profiling of semiconductor epilayers using positron beams , 1989 .

[2]  W. Lau Use of surface charging in x‐ray photoelectron spectroscopic studies of ultrathin dielectric films on semiconductors , 1989 .

[3]  M. Denhoff,et al.  In situ doping by As ion implantation of silicon grown by molecular-beam epitaxy , 1988 .

[4]  Lynn,et al.  Defects and impurities at the Si/Si(100) interface studied with monoenergetic positrons. , 1988, Physical review letters.

[5]  A. Uedono,et al.  Depth profile of vacancy‐type defects in B+‐implanted Si with a SiO2 overlayer by a variable‐energy positron beam , 1988 .

[6]  K. Lynn,et al.  Interaction of positron beams with surfaces, thin films, and interfaces , 1988 .

[7]  Karttunen,et al.  Defect formation in H implantation of crystalline Si. , 1988, Physical review. B, Condensed matter.

[8]  P. Schultz A variable-energy positron beam for low to medium energy research , 1988 .

[9]  A. Rockett,et al.  A low-energy metal-ion source for primary ion deposition and accelerated ion doping during molecular-beam epitaxy , 1987 .

[10]  G. Dlubek,et al.  Positron Studies of Defects in III–V Semiconductor Compounds† , 1987 .

[11]  S. Dannefaer Defects and Oxygen in Silicon Studied by Positrons , 1987 .

[12]  A. Vehanen,et al.  Vacancy-Type Defects in Ion-Implanted Si Studied By Slow Positron Beam , 1987 .

[13]  H. Jorke,et al.  Secondary implantation of Sb into Si molecular beam epitaxy layers , 1985 .

[14]  W. Y. Leong,et al.  Potential enhanced Sb and As doping in Si molecular beam epitaxy , 1985 .

[15]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .