Canonical Representation of Partial 2- and 3-Trees

We give linear time algorithms constructing canonical representations of partial 2-trees (series parallel graphs) and partial 3-trees. These algorithms directly give a linear time isomorphism algorithm for partial 3-trees.

[1]  Charles J. Colbourn,et al.  Steiner trees, partial 2-trees, and minimum IFI networks , 1983, Networks.

[2]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[3]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[4]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[5]  Max Fontet A Linear Algorithm for Testing Isomorphism of Planar Graphs , 1976, ICALP.

[6]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[7]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[8]  Andrzej Proskurowski Recursive Graphs, Recursive Labelings and Shortest Paths , 1981, SIAM J. Comput..

[9]  S. Arnborg,et al.  Characterization and recognition of partial 3-trees , 1986 .

[10]  Kellogg S. Booth,et al.  Lexicographically Least Circular Substrings , 1980, Inf. Process. Lett..

[11]  Andrzej Proskurowski,et al.  Separating subgraphs in k-trees: Cables and caterpillars , 1984, Discret. Math..

[12]  Gary L. Miller Isomorphism Testing and Canonical Forms for k-Contractable Graphs (A Generalization of Bounded Valence and Bounded Genus) , 1983, FCT.

[13]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[14]  D. Rose Triangulated graphs and the elimination process , 1970 .

[15]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[16]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[17]  Stephen T. Hedetniemi,et al.  Linear algorithms on k-terminal graphs , 1987 .

[18]  Charles J. Colbourn,et al.  Linear Time Automorphism Algorithms for Trees, Interval Graphs, and Planar Graphs , 1981, SIAM J. Comput..

[19]  Yossi Shiloach,et al.  A Fast Equivalence-Checking Algorithm for Circular Lists , 1979, Inf. Process. Lett..

[20]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[21]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[22]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[23]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.