GPU‐based interactive visualization framework for ultrasound datasets

Ultrasound imaging is widely used in medical areas. By transmitting ultrasound signals into the human body, their echoed signals can be rendered to represent the shape of internal organs. Although its image quality is inferior to that of CT or MR, ultrasound is widely used for its speed and reasonable cost. Volume rendering techniques provide methods for rendering the 3D volume dataset intuitively. We present a visualization framework for ultrasound datasets that uses programmable graphics hardware. For this, we convert ultrasound coordinates into Cartesian form. In ultrasound datasets, however, since physical storage and representation space is different, we apply different sampling intervals adaptively for each ray. In addition, we exploit multiple filtered datasets in order to reduce noise. By our method, we can determine the adequate filter size without considering the filter size. As a result, our approach enables interactive volume rendering for ultrasound datasets, using a consumer‐level PC. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  A. Laine,et al.  Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles. , 2005, Ultrasound in medicine & biology.

[2]  C. Burckhardt Speckle in ultrasound B-mode scans , 1978, IEEE Transactions on Sonics and Ultrasonics.

[3]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, SIGGRAPH '04.

[4]  Nixon,et al.  Using the Mode for Speckle Filtering in Ultrasound Images for Feature Extraction , 1993 .

[5]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[6]  M. Bauer,et al.  Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization , 2000, Workshop on Graphics Hardware.

[7]  Benjamin Mora,et al.  A new object-order ray-casting algorithm , 2002, IEEE Visualization, 2002. VIS 2002..

[8]  Bogdan PIWAKOWSKI,et al.  Ultrasound , 1964 .

[9]  Günter Knittel,et al.  The ULTRAVIS system , 2000, VVS.

[10]  Yongmin Kim,et al.  Improving the visualization of 3D ultrasound data with 3D filtering , 2005, SPIE Medical Imaging.

[11]  Andreas Kolb,et al.  Opacity Peeling for Direct Volume Rendering , 2006, Comput. Graph. Forum.

[12]  Stefan Bruckner,et al.  Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data , 2004 .

[13]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Sukhyun Lim,et al.  Efficient Space-Leaping Using Optimal Block Sets , 2005, IEICE Trans. Inf. Syst..

[15]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[16]  Sukhyun Lim,et al.  A Half-Skewed Octree for Volume Ray Casting , 2007, IEICE Trans. Inf. Syst..

[17]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. II. Parallel processing and image display , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[19]  Eduard Gröller,et al.  Feature peeling , 2007, GI '07.

[20]  Elsa D. Angelini,et al.  LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography , 2001, IEEE Transactions on Medical Imaging.

[21]  Sukhyun Lim,et al.  A distance template for octree traversal in CPU-based volume ray casting , 2008, The Visual Computer.

[22]  Sukhyun Lim,et al.  Hierarchical sigma-Octree for Visualization of Ultrasound Datasets , 2006, FSKD.

[23]  F. Post,et al.  Particle tracing algorithms for 3 D curvilinear grids Report 94-80 , 1994 .

[24]  O.T. von Ramm,et al.  Interactive volume rendering of real-time three-dimensional ultrasound images , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Riccardo Poli,et al.  Recovery of the 3-D shape of the left ventricle from echocardiographic images , 1995, IEEE Trans. Medical Imaging.

[26]  Dani Lischinski,et al.  Variational classification for visualization of 3D ultrasound data , 2001, Proceedings Visualization, 2001. VIS '01..

[27]  Dieter Hönigmann,et al.  Adaptive design of a global opacity transfer function for direct volume rendering of ultrasound data , 2003, IEEE Visualization, 2003. VIS 2003..

[28]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[30]  Sukhyun Lim,et al.  A Noise-Insensitive Hierarchical Min-Max Octree for Visualization of Ultrasound Datasets , 2005, CIS.

[31]  Allen Van Gelder,et al.  Direct volume rendering with shading via three-dimensional textures , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[32]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[33]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[34]  Matthias Raspe,et al.  Controlling GPU-based Volume Rendering using Ray Textures , 2008 .

[35]  Henning Scharsach Advanced GPU Raycasting , 2005 .

[36]  Gérard Giraudon,et al.  Performing segmentation of ultrasound images using temporal information , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Georgios Sakas,et al.  Extracting surfaces from fuzzy 3D-ultrasound data , 1995, SIGGRAPH.

[38]  O T von Ramm,et al.  Left ventricular wall motion analysis using real-time three-dimensional ultrasound. , 2005, Ultrasound in medicine & biology.