Estimation of general nonlinear state-space systems

This paper presents a novel approach to the estimation of a general class of dynamic nonlinear system models. The main contribution is the use of a tool from mathematical statistics, known as Fishers' identity, to establish how so-called “particle smoothing” methods may be employed to compute gradients of maximum-likelihood and associated prediction error cost criteria.

[1]  Brett Ninness,et al.  On Gradient-Based Search for Multivariable System Estimates , 2008, IEEE Transactions on Automatic Control.

[2]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[3]  Lennart Ljung,et al.  Guest Editorial: Special Issue on System Identification , 2005, IEEE Trans. Autom. Control..

[4]  Peter Salamon,et al.  Facts, Conjectures, and Improvements for Simulated Annealing , 1987 .

[5]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[6]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[7]  Winson Taam,et al.  Nonlinear System Analysis and Identification From Random Data , 1991 .

[8]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[9]  K. Poolla,et al.  New results for Hammerstein system identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[10]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[11]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[12]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[13]  Brett Ninness,et al.  Maximum-likelihood parameter estimation of bilinear systems , 2005, IEEE Transactions on Automatic Control.

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[16]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[17]  H. Saunders Literature Review : RANDOM DATA: ANALYSIS AND MEASUREMENT PROCEDURES J. S. Bendat and A.G. Piersol Wiley-Interscience, New York, N. Y. (1971) , 1974 .

[18]  R. Jennrich,et al.  Acceleration of the EM Algorithm by using Quasi‐Newton Methods , 1997 .

[19]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[20]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[21]  Brett Ninness,et al.  Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..

[22]  Margaret H. Wright,et al.  Direct search methods: Once scorned, now respectable , 1996 .

[23]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[24]  R. B. Gopaluni A particle filter approach to identification of nonlinear processes under missing observations , 2008 .

[25]  Thomas B. Schön,et al.  Parameter Estimation for Discrete-Time Nonlinear Systems Using EM , 2008 .