The asymptotics of the solutions to the anomalous diffusion equations

In this paper, we study the asymptotics of the solutions to the anomalous diffusion equations. The fractional anomalous diffusion equations are obtained from the existing anomalous diffusion and typical diffusion equations by replacing the first-order time derivative with fractional derivatives of order @[email protected]?(0,1) for the sub-diffusion and @[email protected]?(1,2) for the super-diffusion respectively. In most situations, fractional derivatives mean Riemann-Liouville derivative or Caputo derivative. In this paper, we use these two kinds of fractional derivatives. Using Laplace transform and Fourier transform, we obtain the asymptotics estimates of solutions to the anomalous diffusion equations.

[1]  Fawang Liu,et al.  The space-time fractional diffusion equation with Caputo derivatives , 2005 .

[2]  K. Burrage,et al.  Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain , 2012 .

[3]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[4]  Fawang Liu,et al.  The fundamental solution of the space-time fractional advection-dispersion equation , 2005 .

[5]  Fawang Liu,et al.  The time fractional diffusion equation and the advection-dispersion equation , 2005, The ANZIAM Journal.

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  W. Chen,et al.  A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems , 2011 .

[8]  Wen Chen,et al.  Boundary particle method for Laplace transformed time fractional diffusion equations , 2013, J. Comput. Phys..

[9]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[10]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[11]  Fawang Liu,et al.  Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain , 2012, Comput. Math. Appl..

[12]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[13]  Fawang Liu,et al.  Analytical solutions of the multi-term modified power law wave equations in a finite domain , 2012 .

[14]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[15]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[16]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[17]  Barbara Atamaniuk,et al.  Application of Fractional Derivative Operators to Anomalous Diffusion and Propagation Problems , 2007 .

[18]  Wen Chen,et al.  A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures , 2012 .

[19]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[20]  Changpin Li,et al.  Introduction to fractional integrability and differentiability , 2011 .

[21]  S. Westerlund Dead matter has memory , 1991 .

[22]  Changpin Li,et al.  Finite difference Methods for fractional differential equations , 2012, Int. J. Bifurc. Chaos.

[23]  Huang Feng-hui The Fundamental Solution of the Time-Space Fractional Advection-Dispersion Equation , 2009 .

[24]  Massimiliano Giona,et al.  Fractional diffusion equation for transport phenomena in random media , 1992 .

[25]  Changpin Li,et al.  A survey on the stability of fractional differential equations , 2011 .