An isogeometric one-dimensional Kirchhoff-Love type model for developable elastic ribbons

[1]  E. L. Starostin,et al.  Equilibrium Shapes with Stress Localisation for Inextensible Elastic Möbius and Other Strips , 2015 .

[2]  B. Audoly,et al.  “Wunderlich, Meet Kirchhoff”: A General and Unified Description of Elastic Ribbons and Thin Rods , 2014, 1403.2094.

[3]  D. Krejčiřík,et al.  THE EFFECTIVE HAMILTONIAN IN CURVED QUANTUM WAVEGUIDES UNDER MILD REGULARITY ASSUMPTIONS , 2012, 1203.1189.

[4]  H. Lang,et al.  Multi-body dynamics simulation of geometrically exact Cosserat rods , 2011 .

[5]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[6]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[7]  Shyuichi Izumiya,et al.  New special curves and developable surfaces , 2002 .

[8]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[9]  R. Bishop There is More than One Way to Frame a Curve , 1975 .

[10]  W. Wunderlich Über ein abwickelbares Möbiusband , 1962 .

[11]  B. Simeon,et al.  One-Dimensional Modelling of Developable Elastic Strips by Geometric Constraints and their Link to Surface Isometry , 2021, Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS.

[12]  Dominique Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals - Second Edition , 2011 .

[13]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[14]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.