사용자 편의를 위한 북 마크 에이전트

본 논문에서는 사용자가 관심 있는 문서를 카테고리별로 직접 분류해서 추가하던 작업을 자동으로 분류하고 추가 할 수 있는 북 마크 에이전트를 제안한다. 북 마크 에이전트는 사용자가 브라우징 시 사용자 성향을 분석하여 관심 있는 문서를 얻을 수 있다. 문서 내에서 특징을 찾기 위해 TF-IDF를 사용하였으며 또한 단어의 가중치 부여와 유사도를 계산하기 위해 벡터 공간 모델을 사용 하였다. 이 작업을 통해 부정적인 문서의 URL이 추가될 수 있으며 이러한 문제를 해결하기 위해서 사용자의 피드백을 이용하여 제거할 수 있도록 하였다.