Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density

[1]  D. Wilke,et al.  Steel Alloy Hot Roll Simulations and Through-Thickness Variation Using Dislocation Density-Based Modeling , 2017, Metallurgical and Materials Transactions B.

[2]  Baoyu Wang,et al.  A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation , 2017 .

[3]  M. Ristinmaa,et al.  Recrystallization and texture evolution during hot rolling of copper, studied by a multiscale model combining crystal plasticity and vertex models , 2016 .

[4]  Jansen van Rensburg,et al.  Development and implementation of state variable based user materials in computational plasticity , 2016 .

[5]  H. Riedel,et al.  A model for strain hardening, recovery, recrystallization and grain growth with applications to forming processes of nickel base alloys , 2016 .

[6]  Daniel Balzani,et al.  Modeling of Microstructure Evolution with Dynamic Recrystallization in Finite Element Simulations of Martensitic Steel , 2016 .

[7]  R. Logé,et al.  A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress , 2015 .

[8]  A. Brahme,et al.  Coupled crystal plasticity – Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys , 2015 .

[9]  Zi-kui Liu,et al.  An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals , 2015 .

[10]  B. Nestler,et al.  Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production , 2015 .

[11]  Donald W. Brown,et al.  Incrementally objective implicit integration of hypoelastic–viscoplastic constitutive equations based on the mechanical threshold strength model , 2014 .

[12]  T. Takaki,et al.  Multiscale modeling of hot-working with dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical behavior , 2014 .

[13]  Håkan Hallberg,et al.  A modified level set approach to 2D modeling of dynamic recrystallization , 2013 .

[14]  J. Cahn,et al.  Theory of the Pearlite Reaction , 2013 .

[15]  P. Rivera-Díaz-del-Castillo,et al.  Thermostatistical modelling of hot deformation in FCC metals , 2013 .

[16]  N. Moelans,et al.  Phase-field simulation study of the migration of recrystallization boundaries , 2013 .

[17]  M. Ristinmaa,et al.  Microstructure evolution influenced by dislocation density gradients modeled in a reaction–diffusion system , 2013 .

[18]  D. McDowell,et al.  Grain Scale Crystal Plasticity Model with Slip and Microtwinning for a Third Generation Ni‐Base Disk Alloy , 2012 .

[19]  Arthur A. Brown,et al.  Validation of a model for static and dynamic recrystallization in metals , 2012 .

[20]  H. Yang,et al.  Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution , 2011 .

[21]  Thierry Coupez,et al.  Level set framework for the finite element modelling of recrystallization and grain growth in polycrystalline materials , 2011 .

[22]  Y. Im,et al.  Cellular Automata Modeling of Grain Coarsening and Refinement during the Dynamic Recrystallization of Pure Copper , 2010 .

[23]  He Yang,et al.  A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy , 2010 .

[24]  F. Montheillet,et al.  A grain scale approach for modeling steady-state discontinuous dynamic recrystallization , 2009 .

[25]  R. Kapoor,et al.  Aspects of Dynamic Recrystallization in Cobalt at High Temperatures , 2009 .

[26]  S. V. Shevchenko,et al.  A 3-D Monte-Carlo (Potts) model for recrystallization and grain growth in polycrystalline materials , 2006 .

[27]  Mark Miodownik,et al.  On computer simulation methods to model Zener pinning , 2006 .

[28]  Biswajit Banerjee,et al.  The Mechanical Threshold Stress model for various tempers of AISI 4340 steel , 2005, cond-mat/0510330.

[29]  Y. Liu,et al.  Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling , 2005 .

[30]  M. Pietrzyk,et al.  Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model , 2003 .

[31]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[32]  H. Wenk,et al.  Texture and Anisotropy , 2004 .

[33]  Maciej Pietrzyk,et al.  Through-process modelling of microstructure evolution in hot forming of steels , 2002 .

[34]  D. Tortorelli,et al.  On the development of stage IV hardening using a model based on the mechanical threshold , 2002 .

[35]  S. Zwaag,et al.  Modeling the kinetics of grain-boundary-nucleated recrystallization processes after cold deformation , 2002 .

[36]  Amit Acharya,et al.  Grain-size effect in viscoplastic polycrystals at moderate strains , 2000 .

[37]  S. R. Chen,et al.  The mechanical threshold stress constitutive-strength model description of HY-100 steel , 2000 .

[38]  D. McDowell,et al.  Deformation, temperature and strain rate sequence experiments on OFHC Cu , 1999 .

[39]  J. Lépinoux,et al.  A vertex dynamics simulation of grain growth in two dimensions , 1998 .

[40]  M. E. Kassner,et al.  Current issues in recrystallization: a review , 1997 .

[41]  K. Krausz,et al.  Unified constitutive laws of plastic deformation , 1996 .

[42]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[43]  Yuri Estrin,et al.  A unified phenomenological description of work hardening and creep based on one-parameter models , 1984 .

[44]  U. F. Kocks,et al.  A Mechanism for Static and Dynamic Recovery , 1979 .

[45]  U. F. Kocks Laws for Work-Hardening and Low-Temperature Creep , 1976 .

[46]  Y. P. Varshni Temperature Dependence of the Elastic Constants , 1970 .

[47]  J. E. Bailey,et al.  The recrystallization process in some polycrystalline metals , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.